

ZMB431/ ZMB432 Precision Programmable Reference

1 Features

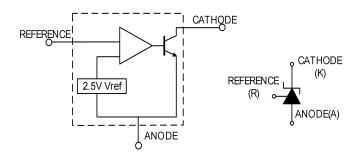
- Reference Voltage Tolerance at 25°C 0.5% (A Grade)
- Programmable Output Voltage to 36 V
- Low Dynamic Output Impedance 0.2 Ω
- Sink Current Capability of 0.5mA to 100mA
- Equivalent Full-Range Temperature Coefficient of 50ppm/°C Typical
- Temperature Compensated for Operation Over Full Rated Operating Temperature Range
- Low Output Noise Voltage
- Fast Turn on Response
- Operation Junction Temperature from -40°C to 150°C
- Lead-Free Packages: SOT23

2 Applications

- Adjustable Voltage and Current Referencing
- Power Supply
- Zener Replacement
- Voltage Monitoring
- Comparator with Integrated Reference
- As Precision Voltage Reference

3 Descriptions

The ZMB431 and ZMB432 device are three-terminal adjustable shunt regulators, with a guaranteed thermal stability over applicable temperature ranges. The output voltage can be set to any value between V_{REF} (approximately 2.5V) and 36V with two external resistors. These devices have provided a very sharp turn-on characteristic, making these devices excellent replacement for Zener diodes in many applications.


Both the ZMB431 and ZMB432 devices are offered in one grade, with initial tolerances (at 25° C) of 0.5%.

Device Information (1)

PART NUMBER	PACKAGE(PIN)	BODY SIZE (NOM)
ZMB431	SOT23(3)	1.30mm×2.92mm
ZMB432	SOT23(3)	1.30mm×2.92mm

(1) For more detail information packages, see the order sheet.

4 Function Block Diagram

REV A.1 1/13

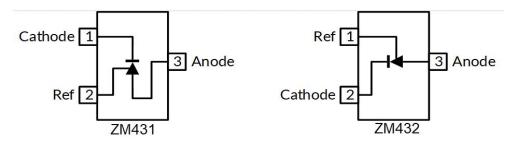
Table of Contents

1 Features	1
2 Applications	1
A Descriptions	1
4 Function Block Diagram	1
5 Revision History	3
5 Revision History6 Package/Ordering Information	4
7 Pin configuration and Functions	5
8 Specifications	6
8.1 Absolute Maximum Ratings	6
8.2 ESD Ratings	
8.3 Recommended Operating Conditions	
8.4 Electrical Characteristics	
8.5 Typical Applications Circuit	8
8.6 Typical Performance Characteristics	
9 Package Outline Dimensions	
10 Tape and Reel Information	. 12

5 Revision History

Note: Page numbers for previous revisions may different from page numbers in the current version.

Version	Change Date	Change Item
A.1	2018/11/03	Initial version completed


6 Package/Ordering Information (1)

PRODUCT	ORDERING NUMBER	VOLTAGE TOLERANCE	PACKAGE LEAD	PACKAGE MARKING ⁽²⁾	MSL ⁽³⁾	PACKAGE OPTION
ZMB431	ZMB431AYSF3	0.5%	SOT23	431A XXXXX	MSL3	Tape and Reel,3000
ZMB432	ZMB432AYSF3	0.5%	SOT23	432A XXXXX	MSL3	Tape and Reel,3000

NOTE:

- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) Package marking:
 - Line1: Product model
 - Line2: Internal code(1-bit) + date code (3-bit) +1-bit LOT code
- (3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

7 Pin configuration and Functions (Top View)

Pin Description

NAME	PIN		DESCRIPTION					
NAME ZMB431 ZMB432		ZMB432	DESCRIF HON					
Cathode	1	2	Shunt Current/ Voltage input					
Ref	Ref 2 1		Threshold relative to common anode					
Anode	3	3	Common pin, normally connected to ground					

8 specifications

8.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)

Characteristics	Characteristics			MAX	UNIT
Cathode Voltage	V _{KA}	-0.3	37	V	
Cathode Current Range (Continuous)	I _{KA}	-100	+155	mA	
Reference Input Current Range	Reference Input Current Range			+10	mA
Operating junction temperature		T _{opr}	-40	+150	°C
Package thermal impedance (3)	SOT23	θ_{JA}		295	°C/W
Power Dissipation	P _D			70	mW
Storage temperature		T _{stg}	-55	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

8.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

			VALUE	UNIT
		Human-Body Model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±4000	V
V _(ESD)	Electrostatic discharge	Charge Device Model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1000	٧
	discridinge	Machine Model (MM)	±200	V

⁽¹⁾ JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

Characteristics	Symbol	MIN	MAX	UNIT
Cathode Voltage	V_{KA}	V_{REF}	36	V
Cathode Current Range (Continuous)	I _{KA}	0.5	100	mA
Operating Ambient Temperature Range	T _A	-40	+125	°C

⁽²⁾ All voltages are with respect to the GND pin.

⁽³⁾ The package thermal impedance is calculated in accordance with JESD-51.

8.4 Electrical Characteristics

(Over recommended operating conditions, Full= -40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CON	MIN	TYP	MAX	UNIT	
Reference Input Voltage	V _{REF}	V _{KA} =V _{REF} , I _{KA} =10mA	0.5%	2.488	2.50	2.512	V
Deviation of reference Input Voltage Over temperature	ΔV_{REF}	V _{KA} =V _{REF} , I _{KA} =10mA T _A = -40°C ~ +125°C		-	20	60	mV
Ratio of Change in Reference Input Voltage	ΔV _{KA} =10V~V _{REF}		-	-1.2	-2.0		
to the Change in Cathode Voltage	$\Delta V_{REF}/\Delta V_{KA}$	I _{KA} =10mA	ΔV _{KA} =36V~10V	-	-1.5	-2.0	mV/V
Reference Input Current	I _{REF}	I _{KA} =10mA, R1=	=10kΩ, R2=∞	-	1.7	4.0	uA
Deviation of Reference Input Current Over Full Temperature Range	ΔI_{REF}	I _{KA} =10mA, R1= T _A = -40°C ~ +1		-	2	5	uA
Minimum cathode current for regulation	I _{KA} (min)	V _{KA} =V _{REF}		-	0.3	0.5	mA
Off-state Cathode Current	I _{KA} (OFF)	V _{KA} =36V, V _{REF} =0V		-	0.05	0.5	uA
Dynamic Impedance	Z _{KA}	V _{KA} =V _{REF} , I _{KA} =1 f≤1.0KHz	mA to100mA	-	0.2	0.5	Ω

8.5 Typical Applications Circuit

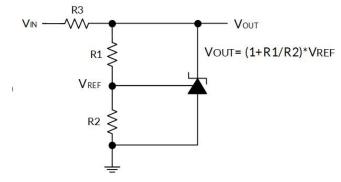


Figure 1. Shunt Regulator

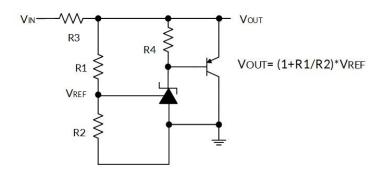
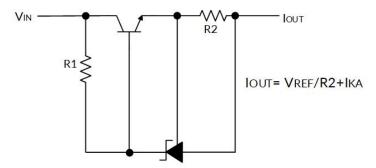



Figure 2. High Current Shunt Regulator

Figure 3. Current Source or Current Limit

8.6 Typical Performance Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

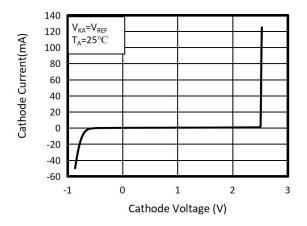


Figure 4. Cathode Current vs Cathode Voltage

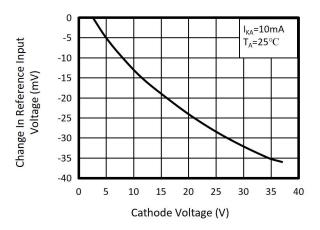


Figure 6. Change in Reference Input Voltage vs Cathode voltage

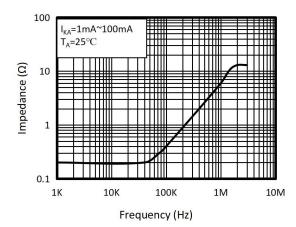


Figure 8. Dynamic Impedance vs Frequency

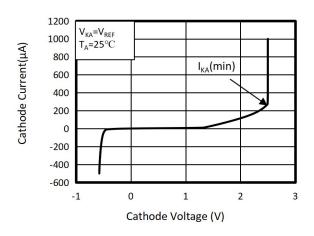


Figure 5. Cathode Current vs Cathode Voltage

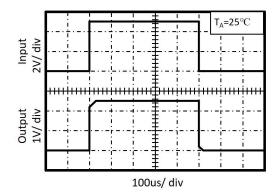


Figure 7. Pulse Response

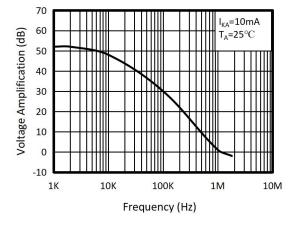


Figure 9. Small Signal Voltage Amplification vs Frequency

Typical Performance Characteristics (Continued)

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

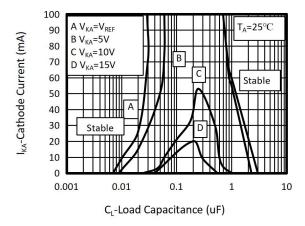


Figure 10. Cathode Current vs Load Capacitance

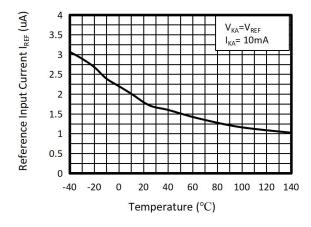
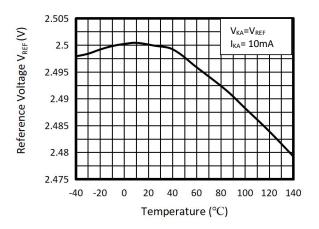
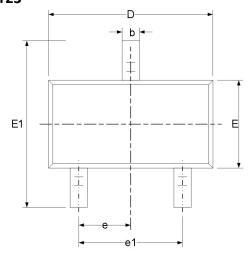
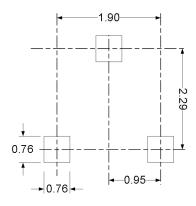
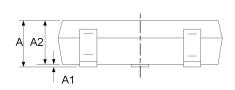
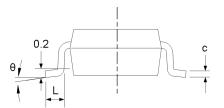


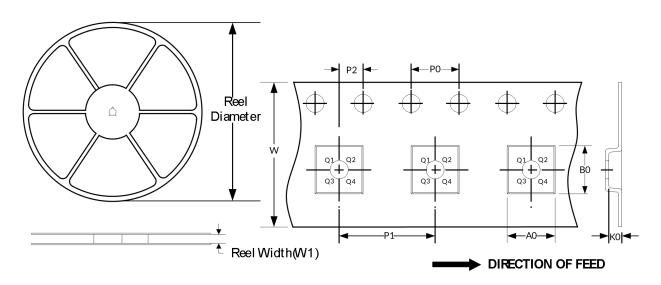
Figure 12. Reference Input Current vs Ambient Temperature


Figure 11. Reference Voltage vs Ambient Temperature


9 Package Outline Dimensions SOT23 (3)

RECOMMENDED LAND PATTERN (Unit: mm)


Council of	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
A ⁽¹⁾	0.900	1.150	0.035	0.045		
A1	0.000	0.100	0.000	0.004		
A2	0.900	1.050	0.035	0.041		
b	0.300	0.500	0.012	0.020		
С	0.080	0.150	0.003	0.006		
D ⁽¹⁾	2.800	3.000	0.110	0.118		
E ⁽¹⁾	1.200	1.400	0.047	0.055		
E1	2.250	2.550	0.089	0.100		
e	0.950 (BSC) (2)	0.037 ((BSC) (2)		
e1	1.800	2.000	0.071	0.079		
L	0.300	0.500	0.012	0.020		
θ	0°	8°	0°	8°		

NOTE:

- ${\bf 1. \ Plastic \ or \ metal \ protrusions \ of \ 0.15mm \ maximum \ per \ side \ are \ not \ included.}$
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. This drawing is subject to change without notice.

10 Tape and Reel Information REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel	Reel Width	A0	B0	K0	P0	P1	P2	W	Pin1
	Diameter	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Quadrant
SOT23	7"	9.5	3.15	2.77	1.22	4.0	4.0	2.0	8.0	Q3

NOTE:

1. All dimensions are nominal.

2. Plastic or metal protrusions of 0.15mm maximum per side are not included.

IMPORTANT NOTICE AND DISCLAIMER

Z-Micro will accurately and reliably provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design advice, WEB tools, safety information and other resources, without warranty of any defect, and will not make any express or implied warranty, including but not limited to the warranty of merchantability Implied warranty that it is suitable for a specific purpose or does not infringe the intellectual property rights of any third party.

These resources are intended for skilled developers designing with Z-Micro products You will be solely responsible for: (1) Selecting the appropriate products for your application; (2) Designing, validating and testing your application; (3) Ensuring your application meets applicable standards and any other safety, security or other requirements; (4) Z-Micro and the Z-Micro logo are registered trademarks of Z-Micro. All trademarks are the property of their respective owners; (5) For change details, review the revision history included in any revised document. The resources are subject to change without notice. Our company will not be liable for the use of this product and the infringement of patents or third-party intellectual property rights due to its use.