

Low-Noise, Very Low Drift, Precision Voltage Reference

1 Features

- Low Temperature Drift: 20 ppm/°C(Max)
- High Accuracy: 0.1% Maximum
- Low Noise: 35μV_{PP}/V
- Low I_Q: 150μA (Typical)
- Operating Temperature Range: -40°C to +125°C
- High Output Current: ±10 mA
- Micro SIZE PACKAGES: SOP8、SOT23

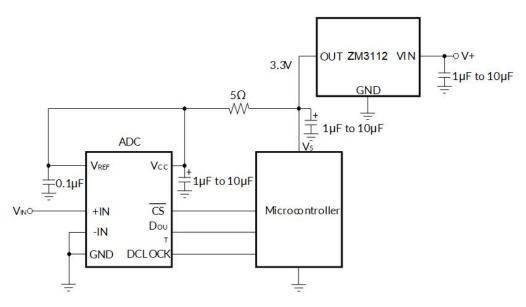
3 Descriptions

The ZMB3112 is a family of low-noise, low-drift, very high precision voltage references. These references are capable of both sinking and sourcing current, and have excellent line and load regulation.

Excellent temperature drift (20ppm/°C) and high accuracy (0.1%) are achieved using proprietary design techniques with 150uA(typical) quiescent current. These features, combined with low noise, make the ZMB3112 family ideal for use in high-precision data acquisition systems.

2 Applications

- Precision Data Acquisition Systems
- Semiconductor Test Equipment
- Medical Instrumentation
- Industrial Process Controls
- Pressure and Temperature Transmitters
- Lab and Field Instrumentation


The ZMB3112 is available in Green SOP8 and SOT23 packages. It operates over an ambient temperature range of -40°C to +125°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE(NOM)		
ZMB3112	SOP8	4.90mm x 3.90mm		
	SOT23	1.30mm×2.90mm		

(1) For all available packages, see the orderable addendum at the end of the data sheet.

4 Typical Application

Table of Contents

1 Features	.1
2 Applications	1
3 Descriptions	. 1
4 Typical Application	
5 Revision History	
6 Package/Ordering Information	.4
7 Pin configuration and Functions	. 5
8 Specifications	.6
8.1 Absolute Maximum Ratings	
8.2 ESD Ratings	
8.3 Recommended Operating Conditions	
8.4 Electrical Characteristics	
8.5 Typical Characteristics	
9 Detailed Description	
9.1 Overview	
9.2 Functional Block Diagram	
10 Feature Description	
10.1 Temperature Drift	
10.2 Thermal Hysteresis	
10.3 Noise Performance	
10.4 Long-Term Stability	
11 Device Functional Modes	
11.1 Basic Connections	
11.2 Supply Voltage	
11.3 Negative Reference Voltage	
12 Layout	
12.1 Layout Guidelines	
12.2 Layout Example	14
12.3 Power Dissipation	
13 Package Outline Dimensions	
14 Tape and Reel Information	17

5 Revision History

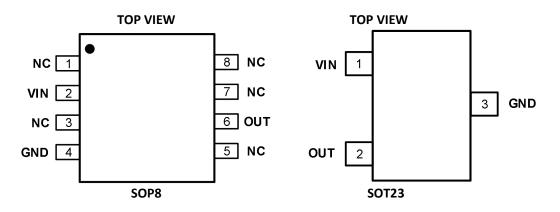
Note: Page numbers for previous revisions may different from page numbers in the current version.

VERSION	Change Date	Change Item
A.1	2021/11/18	Preview version completed

6 Package/Ordering Information (1)

PRODUCT	ORDERING NUMBER	TEMPERATURE RANGE	PACKAGE LEAD	PACKAGE MARKING ^(2/3)	MSL ⁽⁴⁾	PACKAGE OPTION
	ZMB3112-1.25XK	-40°C ~+125°C	SOP8	ZMB3112A	MSL1	Tape and Reel, 4000
	ZMB3112-1.8XK	-40°C ~+125°C	SOP8	ZMB3112B	MSL1	Tape and Reel, 4000
	ZMB3112-2.048XK	-40°C ~+125°C	SOP8	ZMB3112C	MSL1	Tape and Reel, 4000
	ZMB3112-2.5XK	-40°C ~+125°C	SOP8	ZMB3112D	MSL1	Tape and Reel, 4000
	ZMB3112-3.0XK	-40°C ~+125°C	SOP8	ZMB3112E	MSL1	Tape and Reel, 4000
	ZMB3112-3.3XK	-40°C ~+125°C	SOP8	ZMB3112F	MSL1	Tape and Reel, 4000
	ZMB3112-4.096XK	-40°C ~+125°C	SOP8	ZMB3112G	MSL1	Tape and Reel, 4000
ZMB3112	ZMB3112-4.5XK	-40°C ~+125°C	SOP8	ZMB3112H	MSL1	Tape and Reel, 4000
ZIVIB3112	ZMB3112-1.25XSF3	-40°C ~+125°C	SOT23	3112A	MSL1	Tape and Reel, 3000
	ZMB3112-1.8XSF3	-40°C ~+125°C	SOT23	3112B	MSL1	Tape and Reel, 3000
	ZMB3112-2.048XSF3	-40°C ~+125°C	SOT23	3112C	MSL1	Tape and Reel, 3000
	ZMB3112-2.5XSF3	-40°C ~+125°C	SOT23	3112D	MSL1	Tape and Reel, 3000
	ZMB3112-3.0XSF3	-40°C ~+125°C	SOT23	3112E	MSL1	Tape and Reel, 3000
	ZMB3112-3.3XSF3	-40°C ~+125°C	SOT23	3112F	MSL1	Tape and Reel, 3000
	ZMB3112-4.096XSF3	-40°C ~+125°C	SOT23	3112G	MSL1	Tape and Reel, 3000
	ZMB3112-4.5XSF3	-40°C ~+125°C	SOT23	3112H	MSL1	Tape and Reel, 3000

NOTE:


(1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.

(2) There may be additional marking, which relates to the lot trace code information(data code and vendor code), the logo or the environmental category on the device.

(3) A, B, C, D, E, F, G,H represents different Reset Thresholds.

(4) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

7 Pin configuration and Functions (Top View)

Pin Description

ΝΑΝΑΓ	P	PIN		DESCRIPTION
NAME	SOP8	SOT23	I/O ⁽¹⁾	DESCRIPTION
NC ⁽²⁾	1,3,5,7,8	_	_	No internal connection
VIN	2	1	I	Input supply voltage
GND	4	3	—	Ground
OUT	6	2	0	Reference output voltage

(1) I = Input, O = Output.

(2) There is no internal connection. Typically, GND is the recommended connection to a heat spreading plane.

8 specifications

8.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

SYMBOL			MIN	МАХ	UNIT
Vin	Supply voltage, V+ to V–	Supply voltage, V+ to V–		6.0	V
	Output short circuit		-30	30	mA
0		SOT23		292.9	°C/M
θ _{JA}	Package thermal impedance ⁽³⁾	SOP8		110.88	- °C/W
T _A	Operating temperature	·	-40	+125	
TJ	Junction temperature (4)	Junction temperature ⁽⁴⁾			°C
T _{stg}	Storage temperature	Storage temperature			1

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to the GND pin.

(3) The package thermal impedance is calculated in accordance with JESD-51.

(4) The maximum power dissipation is a function of T_{J(MAX)}, R_{0JA}, and T_A. The maximum allowable power dissipation at any ambient temperature is P_D = (T_{J(MAX)} - T_A) / R_{0JA}. All numbers apply for packages soldered directly onto a PCB.

8.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

			VALUE	UNIT
	Human-Body Model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±4000	V	
V _(ESD)	Electrostatic discharge	Charged-Device Model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1500	V
		Machine Model (MM)	±400	V

(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

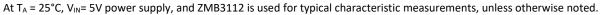
SYMBOL	PARAMETER	MIN	MAX	UNIT
V _{IN}	Input voltage	V _{OUT} +0.3 ⁽¹⁾	5.5	V
I _{Load}	Load current	-10	10	mA

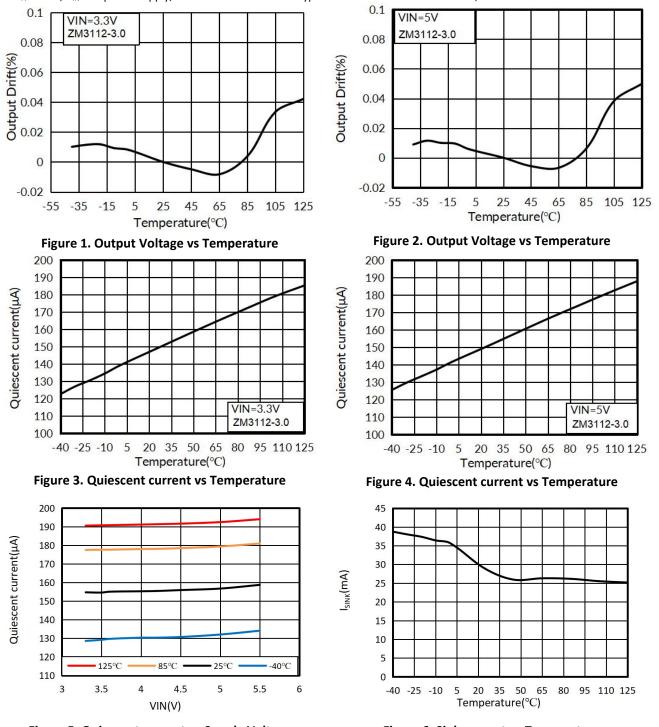
(1) Except for the ZMB3112-1.25/2.048, where $V_{\text{IN}}\left(\text{min}\right)$ = 2.45 V.

8.4 Electrical Characteristics

At $T_A = 25^{\circ}$ C, $I_{OUT} = 0$ mA, and $V_{IN} = 5$ V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT				
			ZMB3112-1.25V							
			ZMB3112-1.8V		1.8					
			ZMB3112-2.048V		2.048					
			ZMB3112-2.5V	2.5						
Output Voltage	Vout		ZMB3112-3.0V		3.0		V			
			ZMB3112-3.3V		3.3		-			
			ZMB3112-4.096V		4.096					
			ZMB3112-4.5V		4.5					
Initial Accuracy			All voltage options ⁽¹⁾	-0.1		0.1	%			
Output Voltage Noise			f = 0.1Hz to 10Hz		35		μV _{PP} /V			
Output Voltage Temperature Drift ⁽²⁾	dV _{OUT} /d	т	T _A = -40°C to +125°C		4	20	ppm/°C			
Long-Term Stability	·		0 to 1000 hours		100		ppm			
			$V_{IN} = (V_{OUT} + 0.3) \text{ to } 5.5 \text{ V}$ ($V_{OUT} < 4\text{V}$)		25	70				
			$V_{IN} = (V_{OUT} + 0.3) \text{ to } 5.5 \text{ V}$ ($V_{OUT} < 4 \text{V}$) $T_A = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$			150	ppm/V			
Line Regulation			$V_{IN} = (V_{OUT} + 0.3) \text{ to } 5.5 \text{ V}$ ($V_{OUT} > 4\text{V}$)		50	200				
			$V_{IN} = (V_{OUT} + 0.3) \text{ to } 5.5 \text{ V}$ ($V_{OUT} > 4\text{V}$) $T_A = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$			260				
			$-10 \text{ mA} < I_{LOAD} < 10 \text{ mA},$ V _{IN} = V _{OUT} + 0.3 V ⁽³⁾		1.5	10				
Load Regulation	dVout/d	ILOAD	$\label{eq:III} \begin{split} -10 \mbox{ mA < I}_{LOAD} &< 10 \mbox{ mA,} \\ V_{IN} &= V_{OUT} + 0.3 \mbox{ V} \\ T_A &= -40^{\circ}\mbox{C to } 125^{\circ}\mbox{C}^{\ (3)} \end{split}$			15	ppm/mA			
Thermal Hysteresis	dT		First Cycle		100		ppm			
		Sourcing			26					
Short-Circuit Current	Isc	Sinking			27		mA			
Turn on Settling Time		To 0.1% with $C_L = 1\mu F$ 2		200		μs				
Capacitive Load			1		50	μF				
Voltage	V _{IN}		$I_{LOAD} = 0, T_A = -40^{\circ}C \text{ to } +125^{\circ}C.$	V _{OUT} + 0.3 ⁽¹⁾		5.5	v			
Quieccent Current	10		I _{LOAD} = 0, T _A = 25°C 150			180				
Quiescent Current	IQ		I _{LOAD} = 0, T _A = -40°C to +125°C				μΑ			

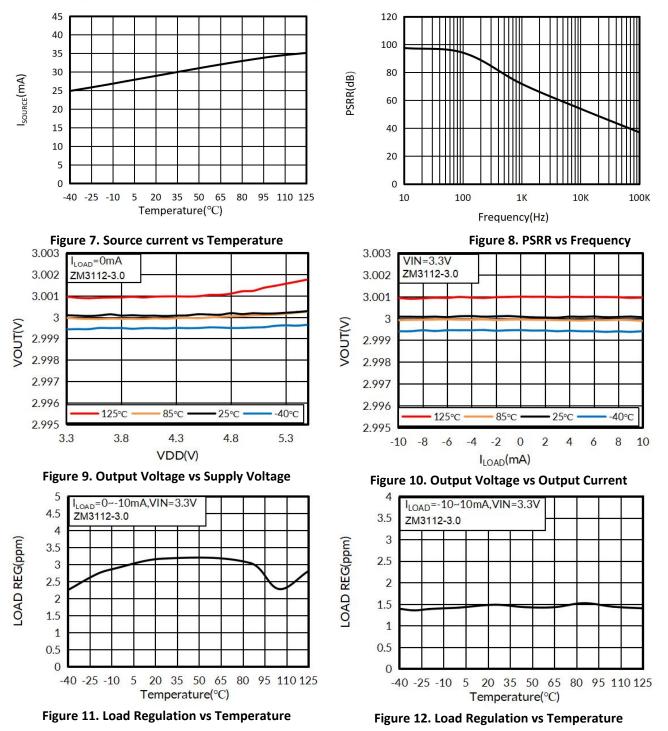

(1) Minimum supply voltage for the ZMB3112 is 2.45 V.


(2) Box Method used to determine temperature drift.

(3) Typical value of load regulation reflects measurements using force and sense contacts;

8.5 Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.



Z-Micro

Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

At T_A = 25°C, V_{IN}= 5V power supply, and ZMB3112 is used for typical characteristic measurements, unless otherwise noted.

Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

At $T_A = 25^{\circ}$ C, $V_{IN} = 5V$ power supply, and ZMB3112 is used for typical characteristic measurements, unless otherwise noted.

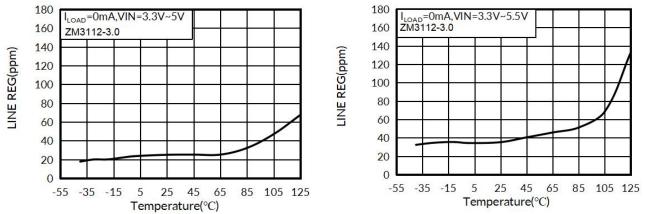


Figure 13. LINE Regulation vs Temperature

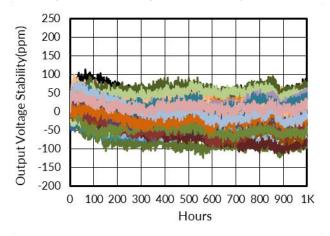
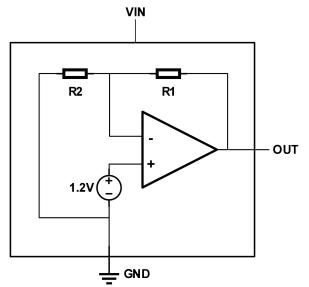


Figure 15. Long-Term Stability (0-1000 Hours)


Figure 14. LINE Regulation vs Temperature

9 Detailed Description

9.1 Overview

The ZMB3112 is family of precision bandgap voltage references that are specifically designed for excellent initial voltage accuracy and drift. See the Functional Block Diagram for a simplified block diagram of the ZMB3112.

9.2 Functional Block Diagram

10 Feature Description

10.1 Temperature Drift

The ZMB3112 is designed for minimal drift error, which is defined as the change in output voltage over temperature. The drift is calculated using the box method, as described in Equation 1.

$$V_{OUTMAX}-V_{OUTMIN}$$
Drift = (\longrightarrow) ×10⁶(ppm)
 V_{OUT} × Temp Range (1)

The ZMB3112 features a maximum drift coefficient of 20 ppm/°C.

10.2 Thermal Hysteresis

Thermal hysteresis for the ZMB3112 is defined as the change in output voltage after operating the device at 25°C, cycling the device through the specified temperature range, and returning to 25°C. Thermal hysteresis can be expressed as Equation 2:

$$V_{HYST} = (\frac{|V_{PRE} - V_{POST}|}{V_{NOM}}$$

where

- V_{HYST} = thermal hysteresis (in units of ppm).
- V_{NOM} = the specified output voltage.
- V_{PRE} = output voltage measured at 25°C pretemperature cycling.
- V_{POST} = output voltage measured after the device has been cycled from 25°C through the specified temperature range of -40°C to 125°C and returned to 25°C.
 (2)

10.3 Noise Performance

Typical 0.1Hz to 10Hz voltage noise for each member of the ZMB3112 family is specified in the Electrical Characteristics table. The noise voltage increases with output voltage and operating temperature. Additional filtering can be used to improve output noise levels, although take care to ensure the output impedance does not degrade performance.

10.4 Long-Term Stability

Due to aging and environmental effects, all semiconductor devices experience physical changes of the semiconductor die and the packaging material over time. These changes and the associated package stress on the die cause the output voltage in precision voltage references to deviate over time. The value of such change is specified on the datasheet by a parameter called the Long-term stability (also known as the Long-Term Drift (LTD)). Equation 3 shows how LTD is calculated. Note that the LTD value will be positive if the output voltage drifts higher over time, negative if the voltage drifts lower over time.

$$LTD(ppm)|_{t=n} = \frac{(V_{OUT}|_{t=0} - V_{OUT}|_{t=n})}{V_{OUT}|_{t=0}}$$

where

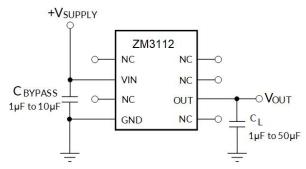
- LTD(ppm)|_{t=n} = Long-term stability (in units of ppm).
- V_{OUT}|_{t=0} = Output voltage at time = 0 hr.
- $V_{OUT}|_{t=n} = Output voltage at time = n hr.$

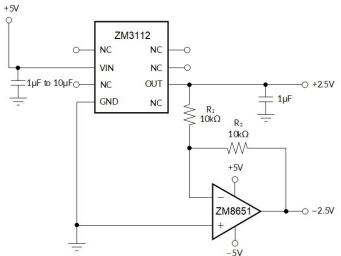
(3)

11 Device Functional Modes

11.1 Basic Connections

Figure 16 shows the typical connections for the ZMB3112. Z-Micro recommends a supply bypass capacitor ranging from 1 μ F to 10 μ F. A minimum 1 μ F output capacitor (C_L) must be connected from V_{OUT} to GND.




Figure 16. Basic Connections

11.2 Supply Voltage

The ZMB3112 family of voltage references features extremely low dropout voltage. With the exception of the V_{OUT} <2.5V, which has a minimum supply requirement of 2.45 V, these references can be operated with a supply of 300 mV more than the output voltage in an unloaded condition.

11.3 Negative Reference Voltage

For applications requiring a negative and positive reference voltage, the ZMB3112 and ZM8651 can be used to provide a dual-supply reference from a 5V supply. Figure 17 shows the ZMB3112 used to provide a 2.5V supply reference voltage. The low drift performance of the ZMB3112 complements the low offset voltage and zero drift of the ZM8651 to provide an accurate solution for split-supply applications. Take care to match the temperature coefficients of R_1 and R_2 .

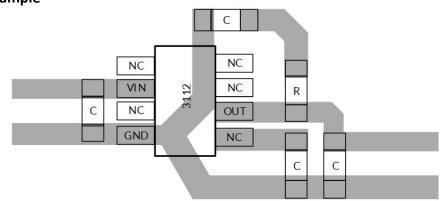


Figure 17. The ZMB3112 and ZM8651 Create Positive and Negative Reference Voltages

12 Layout

12.1 Layout Guidelines

- Place the power-supply bypass capacitor as closely as possible to the supply and ground pins. The recommended value of this bypass capacitor is from 1 μ F to 10 μ F. If necessary, additional decoupling capacitance can be added to compensate for noisy or high-impedance power supplies.
- Place a $1\mu F$ noise filtering capacitor between the NR pin and ground.
- The output must be decoupled with a 1 μ F to 50 μ F capacitor. A resistor in series with the output capacitor is optional. For better noise performance, the recommended ESR on the output capacitor is from 1 Ω to 1.5 Ω .
- A high-frequency, 1µF capacitor can be added in parallel between the output and ground to filter noise and help with switching loads as data converters.

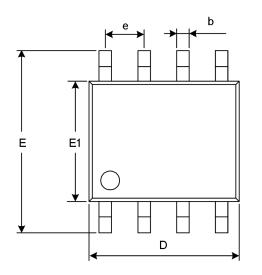
12.2 Layout Example

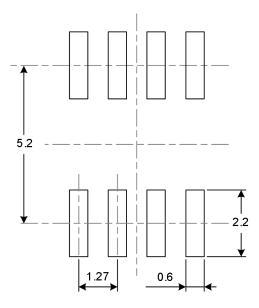
Figure 18. Layout Example

12.3 Power Dissipation

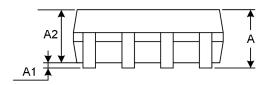
The ZMB3112 family is specified to deliver current loads of ± 10 mA over the specified input voltage range. The temperature of the device increases according to Equation 4:

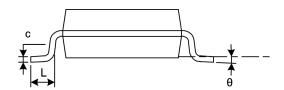
 $T_{J} = T_{A} + P_{D} \times \theta_{JA}$


where


- T_J = Junction temperature (°C)
- T_A = Ambient temperature (°C)
- P_D = Power dissipated (W)
- θ_{JA} = Junction-to-ambient thermal resistance (°C/W)

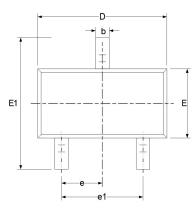
(4)

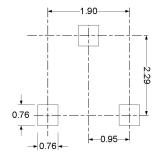

The ZMB3112 junction temperature must not exceed the absolute maximum rating of 150°C.


13 Package Outline Dimensions SOP8 ⁽³⁾

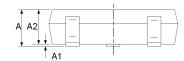
RECOMMENDED LAND PATTERN (Unit: mm)

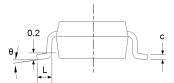
Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
A ⁽¹⁾	1.350	1.750	0.053	0.069		
A1	0.100	0.250	0.004	0.010		
A2	1.350	1.550	0.053	0.061		
b	0.330 0.510		0.013	0.020		
с	0.170	0.250	0.007	0.010		
D ⁽¹⁾	4.800	5.000	0.189	0.197		
e	1.270 (BSC) ⁽²⁾	0.050 (BSC) ⁽²⁾			
E	5.800	6.200	0.228	0.244		
E1 ⁽¹⁾	3.800	4.000	0.150	0.157		
L	0.400	1.270	0.016	0.050		
θ	θ 0° 8°		0°	8°		


NOTE:

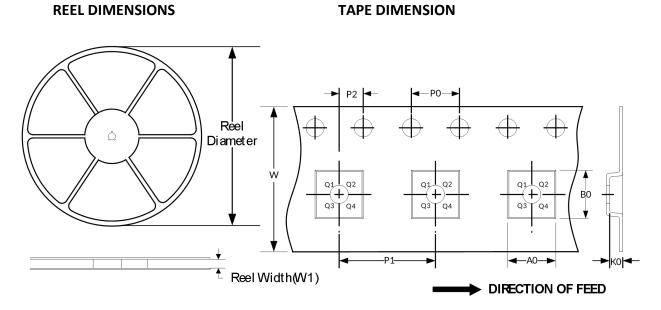

Plastic or metal protrusions of 0.15mm maximum per side are not included.
 BSC (Basic Spacing between Centers), "Basic" spacing is nominal.

3. This drawing is subject to change without notice.


Z-Micro


SOT23⁽³⁾

RECOMMENDED LAND PATTERN (Unit: mm)


Sumbol	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
A ⁽¹⁾	0.900	1.150	0.035	0.045		
A1	0.000	0.100	0.000	0.004		
A2	0.900	1.050	0.035	0.041		
b	0.300	0.500	0.012	0.020		
с	0.080	0.150	0.003	0.006		
D ⁽¹⁾	2.800	3.000	0.110	0.118		
E ⁽¹⁾	1.200	1.400	0.047	0.055		
E1	2.250	2.550	0.089	0.100		
e	0.950 (BSC) ⁽²⁾	0.037 (BSC) ⁽²⁾		
el	1.800	2.000	0.071	0.079		
L	0.300	0.500	0.012	0.020		
θ	0°	8°	0°	8°		

NOTE:

Plastic or metal protrusions of 0.15mm maximum per side are not included.
 BSC (Basic Spacing between Centers), "Basic" spacing is nominal.

3. This drawing is subject to change without notice.

14 Tape and Reel Information

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOP8	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
SOT23	7"	9.5	3.15	2.77	1.22	4.0	4.0	2.0	8.0	Q3

NOTE:

1. All dimensions are nominal.

2. Plastic or metal protrusions of 0.15mm maximum per side are not included.

IMPORTANT NOTICE AND DISCLAIMER

Z-Micro will accurately and reliably provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design advice, WEB tools, safety information and other resources, without warranty of any defect, and will not make any express or implied warranty, including but not limited to the warranty of merchantability Implied warranty that it is suitable for a specific purpose or does not infringe the intellectual property rights of any third party.

These resources are intended for skilled developers designing with Z-Micro products You will be solely responsible for: (1) Selecting the appropriate products for your application; (2) Designing, validating and testing your application; (3) Ensuring your application meets applicable standards and any other safety, security or other requirements; (4) Z-Micro and the Z-Micro logo are registered trademarks of Z-Micro. All trademarks are the property of their respective owners; (5) For change details, review the revision history included in any revised document. The resources are subject to change without notice. Our company will not be liable for the use of this product and the infringement of patents or third-party intellectual property rights due to its use.