Z-Micro

ZMCIS302x Low-Power Bidirectional I2C Isolators

1 Key Features

- Bidirectional Data Transfer from DC to 2MHz
- Robust Galvanic Isolation of Digital Signals
 - High lifetime: > 40 years
 - Withstands up to 3.75kV_{RMS} (narrow-body package), 5kV_{RMS} (wide-body packages) and 7.5kV_{RMS} (super wide-body packages) isolation rating for 60s (V_{ISO})
 - ±150 kV/µs typical CMTI
 - Schmitt trigger inputs for high noise immunity
 - High electromagnetic immunity and withstands ±12.8kV surge voltage
 - ±8kV Human Body Model ESD Protection
- 3.0V to 5.5V Wide Supply Operation
- Wide Operating Temperature Range: -40°C to 125°C
- RoHS-Compliant Packages
 - Narrow-body SOIC8 (S) package
 - Wide-body SOIC8-WB (G) package
 - Wide-body SOIC16-WB (W) package
 - Super Wide-body SOIC8-WWB (WG) package
- Open-drain Outputs
 - 3.5mA Side A sink current capability
 - 35mA Side B sink current capability
- Safety Regulatory Approvals
 - VDE certification according to DIN EN IEC60747-17(VDE 0884-17):2021-10
 - UL certification according to UL 1577
 - CQC certification according to GB4943.1-2022

2 Applications

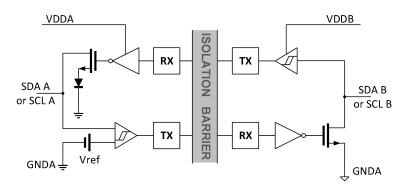
- I²C, SMBus, PMBus[™] Interfaces
- Motor control systems
- Medical Equipment
- Battery Management
- Instrumentation

3 Description

The ZMCIS302x devices are complete dual-channel, galvanic digital isolators with up to $3.75 kV_{\text{RMS}}$ (narrow-

body package)/5kV_{RMS} (wide-body package)/7.5kV_{RMS} (super wide-body package) isolation rating and ± 150 kV/µs typical CMTI. All device versions have Schmitt trigger inputs for high noise immunity and each isolation channel has a logic input and output buffer separated by capacitive silicon dioxide (SiO₂) insulation barrier to provide high electromagnetic immunity and low EMI. These devices feature high-integration design and only require fewer external components, V_{DDA}, V_{DDB} bypass capacitors and pull-up resistors, to build an isolated I²C interface.

This family of devices operates from DC to 2MHz. The ZMCIS3020 offers two bidirectional, open-drain channels for applications, such as multi-master I^2C , that require data and clock to be transmitted in both directions on the same line. The ZMCIS3021 provides an isolated I^2C compatible interface supporting master mode only, with a unidirectional clock (SCL), and bidirectional data (SDA). All devices feature independent 3.0V to 5.5V supplies on each side of the isolator and the logic levels are set independently on either side by V_{DDA} and V_{DDB} . A simplified block diagram for a single ZMCIS302x bidirectional channel is shown in the figure below.


The ZMCIS302x series of devices are specified over -40°C to +125°C operating temperature range and are available in 8-pin SOIC narrow body package, 8-pin/16-pin SOIC wide body package and 8-pin SOIC super wide-body package. The wide temperature range and high isolation voltage make the devices ideal for use in harsh industrial environments.

Device Information

PART NUMBER	PACKAGE	BODY SIZE (NOM)	
	SOIC8(S)	4.90mm × 3.90mm	
ZMCIS3020 ZMCIS3021	SOIC8-WB(G)	5.85mm × 7.50mm	
	SOIC16-WB(W)	10.30mm × 7.50mm	
ZMCIS3020	SOIC8-WWB(WG)	6.40mm × 14.00mm	

ZMCIS302x Functional Block Diagram

4 Ordering Guide

Table 4-1 Ordering Guide for Valid Ordering Part Number

Part Number	# of Bidirectional Channels	# of Unidirectional Channels	Rated Voltage (V _{RMS})	Default Output	Package
ZMCIS3020S	2	0	3.75	Open drain	SOIC8 (S)
ZMCIS3020G	2	0	5.0	Open drain	SOIC8-WB (G)
ZMCIS3020W	2	0	5.0	Open drain	SOIC16-WB (W)
ZMCIS3020WG	2	0	7.5	Open drain	SOIC8-WWB (WG)
ZMCIS3021S	1	1	3.75	Open drain	SOIC8 (S)
ZMCIS3021G	1	1	5.0	Open drain	SOIC8-WB (G)
ZMCIS3021W	1	1	5.0	Open drain	SOIC16-WB (W)

Table of Contents

1	Key Fe	eatures1	L
2	Applic	cations 1	L
3	Descr	iption1	L
4	Order	ing Guide2	2
5	Revisi	on History 3	5
6	Pin De	escriptions and Functions4	ŀ
7	Specif	ications6	;
	7.1	Absolute Maximum Ratings ¹ 6	5
	7.2	ESD Ratings6	;
	7.3	Recommended Operating Conditions6	;
	7.4	Thermal Information7	
	7.5	Power Ratings7	/
	7.6	Insulation Specifications8	3
	7.7	Safety-Related Certifications)
	7.8	Electrical Characteristics 10)
	7.9	Supply Current Characteristics11	-
	7.10	Timing Requirements11	-

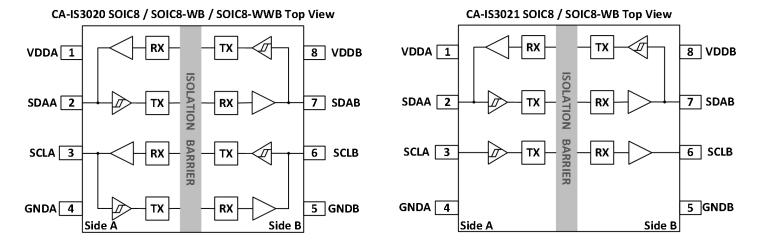
	7.11	Timing Characteristics	. 12
8	Para	ameter Measurement Information	13
9	Deta	ailed Description	14
	9.1	Overview	. 14
	9.2	Functional Block Diagrams	.14
	9.3	Device Operation Modes	. 15
10		Application and Implementation	. 15
	10.1	Overview	. 15
	10.2	Typical Application	. 16
11		Package Information	. 17
	11.1	SOIC8 (S) Package	.17
	11.2	SOIC8-WB (G) Package	. 18
	11.3	SOIC16-WB (W) Package	. 19
	11.4	SOIC8-WWB (WG) Package	. 20
12		Soldering Information	.21
13		Soldering Information	.22
14		Important Notice错误!未定义书签	5.

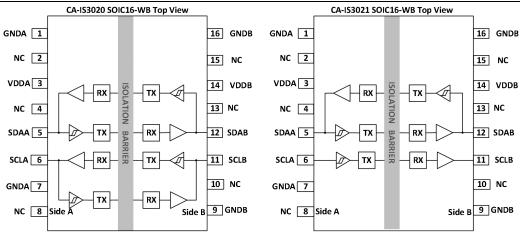
5 Revision History

Revision Number	Description	Revision Date	Page Changed
Version 1.00	N/A		N/A
Version 1.01	Change POD and tape information	2023/02/09	18, 19, 20, 22
Version 1.02	Update VDE information	2023/09/13	8, 9
Version 1.03	Update VDE, UL, CQC information Update the test conditions of V _{IOSM}	2024/04/13	1, 8, 9
	Add part number for SOIC8-WWB package: ZMCIS3020WG		1, 2, 4, 7, 8, 9, 14, 21, 23
Version 1.04	Update VDE information	2024/07/02	8, 9
version 1.04	Update recommended land patterns for SOIC8, SOIC8-WB and SOIC16-WB	2024/07/02	17, 18, 19
	Update recommended operation conditions for $V_{\text{ILA}}, V_{\text{ILB}}$ and V_{IHB}]	6

Z-Micro

6 Pin Descriptions and Functions




Figure 6-1 ZMCIS3020/ZMCIS3021 SOIC-8, SOIC8-WB and SOIC8-WWB Top View

Pin Name	Pin Number	Туре	Description
VDDA	1	Power	Power supply for side A.
SDAA	2	2 Digital I/O Bidirectional data input/output on side A. SDAA is translated to/from and is an open-drain output. 3 Digital I/O Bidirectional clock input/output on side A. SCLA is translated to/from and is an open-drain output.	
SCLA	3		
GNDA	4	4 Ground Ground reference for side A.	
GNDB	5	Ground	Ground reference for side B.
SCLB	6	Digital I/O	Bidirectional clock input/output on side B. SCLB is translated to/from SCLA and is an open-drain output.
SDAB	7	Digital I/O	Bidirectional data input/output on side B. SDAB is translated to/from SDAA and is an open-drain output.
VDDB	8	Power	Power supply for side B.

Table 6- 2 ZMCIS3021S/ZMCIS3021G Pin Description

Pin name	Pin number	Туре	Description
VDDA	1 Power Power supply for side A.		Power supply for side A.
SDAA	A 2 Digital I/O Bidirectional data input/output o		Bidirectional data input/output on side A. SDAA is translated to/from SDAB
JDAA	Ζ	Digital 1/0	and is an open-drain output.
SCLA	3	Digital Input	Clock input on side A. SCLA is translated to SCLB.
GNDA	4	Ground	Ground reference for side A.
GNDB	5	Ground	Ground reference for side B.
	SCLB 6 Digital Output Clock output on side B. SCLB is tranout output.		Clock output on side B. SCLB is translated from SCLA and is an open-drain
JCLD			output.
SDAB	AB 7 Dig	Digital I/O	Bidirectional data input/output on side B. SDAB is translated to/from SDAA
JUAD		Digital I/O	and is an open-drain output.
VDDB	8	Power	Power supply for side B.

Pin name	Pin number	Туре	Description
GNDA	1, 7	Ground	Ground reference for side A.
NC	2, 4, 8		No connect. Do not connect these pins externally.
VDDA	3	Power	Power supply for side A.
SDAA	5	Digital I/O	Bidirectional data input/output on side A. SDAA is translated to/from SDAB and is an open-drain output.
SCLA	6	Digital I/O	Bidirectional clock input/output on side A. SCLA is translated to/from SCLB and is an open-drain output.
GNDB	9, 16	Ground	Ground reference for side B.
NC	10, 13, 15		No connect. Do not connect these pins externally.
SCLB	11	Digital I/O	Bidirectional clock input/output on side B. SCLB is translated to/from SCLA and is an open-drain output.
SDAB	12	Digital I/O	Bidirectional data input/output on side B. SDAB is translated to/from SDAA and is an open-drain output.
VDDB	14	Power	Power supply for side B.

Table 6-3 ZMCIS3020W Pin Description

Table 6-4 ZMCIS3021W Pin Description

Pin name	Pin number	Туре	Description
GNDA	GNDA1, 7GroundGround reference for side A.NC2, 4, 8No connect. Do not connect these pins externally.		Ground reference for side A.
NC			No connect. Do not connect these pins externally.
VDDA	3	Power	Power supply for side A.
SDAA	5	5 Digital I/O Bidirectional data input/output on side A. SDAA is translated to/from and is an open-drain output.	
SCLA	6	Digital Input	Clock input on side A. SCLA is translated to SCLB.
GNDB	9, 16	Ground	Ground reference for side B.
NC	10, 13, 15		No connect. Do not connect these pins externally.
SCLB	11	Digital Output	Clock output on side B. SCLB is translated from SCLA and is an open-drain output.
SDAB	12	Digital I/O	Bidirectional data input/output on side B. SDAB is translated to/from SDAA and is an open-drain output.
VDDB	14	Power	Power supply for side B.

7 **Specifications**

7.1 Absolute Maximum Ratings¹

	PARAMETER	MIN	MAX	UNIT
V _{DDA} , V _{DDB}	Power supply voltage ²	-0.5	6.0	V
SDAA, SCLA	Input/Output voltage	-0.5	$V_{DDA} + 0.5^{3}$	V
SDAB, SCLB	Input/Output voltage	-0.5	$V_{DDB} + 0.5^{3}$	V
I _{OA}	Output Current	-20	20	mA
I _{OB}	Output Current	-100	100	mA
TJ	Junction temperature		150	°C
T _{STG}	Storage temperature	-65	150	°C
Notos		·		

Notes:

The stresses listed under "Absolute Maximum Ratings" are stress ratings only, not for functional operation condition. Exposure to absolute 1. maximum rating conditions for extended periods may cause permanent damage to the device.

- All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GNDA or GNDB) and are peak voltage 2. values.
- 3. The maximum voltage must not exceed 6V.

7.2 **ESD Ratings**

			VALUE	UNIT		
V_{ESD}	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ¹	±8000	V		
		Charged device model (CDM), per JEDEC Specification JESD22-C101, all pins ²	±2000	V		
Not	lotes:					
1.	 Per JEDEC document JEP155, 500V HBM allows safe manufacturing of standard ESD control process. 					
~						

Per JEDEC document JEP157, 250V HBM allows safe manufacturing of standard ESD control process. 2.

7.3 **Recommended Operating Conditions**

	PARAMETER	N	1IN	MAX	UNIT
V _{DDA} , V _{DDB}	Power supply voltage	3	8.0	5.5	V
V _{SDDA} , V _{VSCLA}	A side input voltage		0	V _{DDA}	V
V _{SDDB} , V _{VSCLB}	B side input voltage		0	V _{DDB}	V
V _{ILA}	A side Input low voltage		0	0.47	V
V _{IHA}	A side Input high voltage	0.7	K V _{DDA}	V _{DDA}	V
V _{ILB}	B side Input low voltage		0	0.8	V
V _{IHB}	B side Input high voltage		2	V _{DDB}	V
I _{OLA}	A side Output current (low level)	().5	3.5	mA
I _{OLB}	B side Output current (low level)	().5	35	mA
C _A	Maximum load capacitance on A side			40	pF
C _B	Maximum load capacitance on B side			400	pF
f _{MAX} 1	Maximum Frequency			2	MHz
T _A	Environmental temperature	-	40	125	°C
Tj	Junction temperature	-	40	150	°C
Note:		1			

1. This maximum signal transmission rate is the maximum signal frequency at the maximum bus capacitance load and the maximum pull-down current. If the capacitance load is smaller, a higher signal transmission rate is possible.

Z-Micro

7.4 Thermal Information

THERMAL METRIC		ZMCIS302x				
		SOIC8 (S)	SOIC8-WB (G)	SOIC16-WB (W)	SOIC8-WWB (WG)	UNIT
R _{0JA}	Junction-to-ambient thermal resistance	109.0	92.3	86.5	68.3	°C/W

7.5 Power Ratings

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	Unit
PD	Maximum power dissipation (both sides)				86	mW
P _{DA}	Maximum power dissipation (side-A)	$V_{DDA} = V_{DDB} = 5.5V, T_J = 150^{\circ}C, C_A = 40pF, C_B =$			34	mW
P _{DB}	Maximum power dissipation (side-B)	400pF; Input a 1-MHz 50% duty cycle clock signal			52	mW

ZMCIS3020, ZMCIS3021

Version 1.04

7.6 Insulation Specifications

	Parameters Test conditions			Valu	ue		Unit
	Parameters	lest conditions	S	G	W	WG	Unit
CLR	External clearance ¹	Shortest terminal-to-terminal distance through air	4	8	8	15	mm
CPG	External creepage ¹	Shortest terminal-to-terminal distance across the package surface	4	8	8	15	mm
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	28	28	28	28	μm
СТІ	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	>600	>600	>600	>600	v
	Material group	In accordance with IEC 60664-1	Ι		I	I	
		Rated mains voltage ≤ 150V _{RMS}	I-IV	I-IV	I-IV	I-IV	
		Rated mains voltage ≤ 300V _{RMS}	I-IV	I-IV	I-IV	I-IV	1
EC 6066	64-1 over-voltage category	Rated mains voltage ≤ 600V _{RMS}	N/A	I-IV	I-IV	I-IV	1
		Rated mains voltage ≤ 1000V _{RMS}	N/A	-	1-111	I-IV	1
DIN V V	DE V 0884-17:2021-10 ²						
VIORM	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	566	1414	1414	2828	VPF
Maximum operating		AC voltage; time-dependent dielectric breakdown (TDDB) test	400	1000	1000	2000	V _{RN}
10 1111	isolation voltage	DC voltage	566	1414	1414	2828	VD
VIOTM Maximum transient isolation voltage		$V_{\text{TEST}} = V_{\text{IOTM}},$ t=60s (certified); $V_{\text{TEST}} = 1.2 \times V_{\text{IOTM}},$ t=1 s (100% product test)	5300	7070	7070	10600	VP
Vimp	Maximum impulse voltage	1.2/50-µs waveform per IEC 62368-1	5000	9846	9846	9846	VP
V _{IOSM}	Maximum surge isolation voltage ³	VIOSM \ge 1.3 x VIMP; Tested in oil (qualification test), 1.2/50-µs waveform per IEC 62368-1	6500	12800	12800	12800	VPR
		Method a, after input/output safety test of the sub-category 2/3, $V_{ini} = V_{IOTM}$, $t_{ini} = 60s$; $V_{pd(m)} = 1.2 \times V_{IORM}$, $t_m = 10s$	≤5	≤5	≤5	≤5	
q _{pd}	Apparent charge ⁴	Method a, after environmental test of the sub- category 1, $V_{ini} = V_{IOTM}$, $t_{ini} = 60s$; $V_{pd(m)} = 1.6 \times V_{IORM}$, $t_m = 10s$	≤5	≤5	≤5	≤5	pC
		$ Method b1, routine test (100\% production test) \\ and preprocessing (sample test) \\ V_{ini} = 1.2 \times V_{IOTM}, t_{ini} = 1s; \\ V_{pd(m)} = 1.875 \times V_{IORM}, t_m = 1s (certified, G/W/WG) \\ V_{pd(m)} = 1.5 \times V_{IORM}, t_m = 1s (certified, S) $	≤5	≤5	≤5	≤5	
C _{IO}	Barrier capacitance, input to output ⁴	$V_{IO} = 0.4 \times \sin(2\pi ft), f = 1MHz$	~0.5	~0.5	~0.5	~0.5	pF
		V _{IO} = 500 V, T _A = 25°C	>1012	>1012	>1012	>1012	
RIO	Isolation resistance ⁵	$V_{10} = 500 \text{ V}, 100^{\circ}\text{C} \le T_A \le 125^{\circ}\text{C}$	>1011	>1011	>1011	>1011	Ω
		V _{IO} = 500 V at T _s = 150°C	>109	>109	>109	>109	1
	Contaminant level		2	2	2	2	
JL 1577		1			1	1	
		V _{TEST} = V _{ISO} , t = 60s (certified)					

Notes:

1. Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.

2. This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

3. Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.

4. Apparent charge is electrical discharge caused by a partial discharge (pd).

5. All pins on each side of the barrier tied together creating a two-terminal device.

7.7 Safety-Related Certifications

VDE	UL	CQC
Certified according to DIN EN IEC60747-17(VDE 0884-	Certified according to UL 1577	Certified according to GB4943.1-2022
17):2021-10; EN IEC60747- 17:2020+AC:2021	Component Recognition Program	
Basic Isolation (SOIC8):	SOIC8: 3750VRMS	SOIC8-WB / SOIC16-WB:
VIORM: 566V _{PK}	SOIC8-WB: 5000VRMS	Reinforced insulation (Altitude ≤ 5000m)
VIOTM: 5300V _{PK}	SOIC16-WB: 5000VRMS	
VIOSM: 6500V _{PK}	SOIC8-WWB: 7500VRMs (Pending)	
Reinforced Isolation (SOIC8-WB / SOIC16-WB):		
VIORM: 1414V _{PK}		
VIOTM: 7070V _{PK}		
VIOSM: 12800V _{PK}		
Reinforced Isolation (SOIC8-WWB): Pending		
VIORM: 2828V _{PK}		
VIOTM: 10600V _{PK}		
VIOSM: 12800V _{PK}		
Reinforced insulation Certificate number: 40057278	Certificate number:	Certificate number:
Basic insulation Certificate number: 40052786	E511334	SOIC8-WB: CQC24001434134
		SOIC16-WB: CQC23001406424

Version 1.04

Electrical Characteristics 7.8

Over recommended operating conditions, unless otherwise specified

PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Side A	· · · ·					
VILTA	Logic low input threshold (SDAA and SCLA)		470	500	520	mV
VIHTA	Logic high input threshold (SDAA and SCLA)		500	560	620	mV
V _{HYSA}	Voltage input hysteresis	VIHTA -VILTA	40	60	80	mV
V _{OLA}	Logic low output voltage (SDAA and SCLA) $^{ m 1}$	$0.5 \text{mA} \leq (I_{SDAA} \text{ and } I_{SCLA}) \leq 3.5 \text{mA}$	630	700	760	mV
ΔV_{OITA}	Logic-low output voltage to logic-high input voltage threshold difference (SDAA and SCLA) ^{1, 2}	$0.5\text{mA} \leq (I_{SDAA} \text{ and } I_{SCLA}) \leq 3.5\text{mA}$	100			mV
Side B			1			•
VILTB	Logic low input threshold (SDAB and SCLB)		1.13	1.33	1.53	v
V _{IHTB}	Logic low output voltage (SDAB and SCLB)		1.55	1.75	1.97	V
V _{HYSB}	Voltage input hysteresis	V _{IHTB} -V _{ILTB}	0.30	0.42	0.54	V
V _{OLB}	Logic-low output voltage (SDAB and SCLB)	$0.5mA \le (I_{SDAB} \text{ and } I_{SCLB}) \le 35mA$			0.4	V
Both Sides			1			
.	Input leakage currents, SDAA, SCLA, SDAA, and SCLA	$V_{SDAA} = V_{SCLA} = VDDA$ $V_{SDAB} = V_{SCLB} = VDDB$			1	μΑ
Cı	Input capacitance to local ground (SDA1, SCL1, SDA2, and SCL2)			3		pF
CMTI	Common mode transient immunity	See Figure 8-3	±100	±150		kV/μs
V _{DDUV}	VDD_ Undervoltage-lockout threshold ³		1.95	2.24	2.53	V
Notes:		1	1			1

Not

This parameter applies to the ZMCIS3020 (SDAA, SCLA) and ZMCIS3021 SDAA bidirectional lines only. 1.

 $\Delta V_{\text{OITA}} = V_{\text{OLA}} - V_{\text{IHTA}}$. This is the minimum difference between logic-low output voltage and a logic-high input voltage. 2.

Any V_{DD} voltage on both sides, less than the minimum will ensure device lockout. V_{DD} voltage on both side A and side B greater than the 3. maximum will prevent device lockout.

Z-Micro

7.9 Supply Current Characteristics

Over recommended operating conditions, unless otherwise specified, see Figure 8-1 for more information.

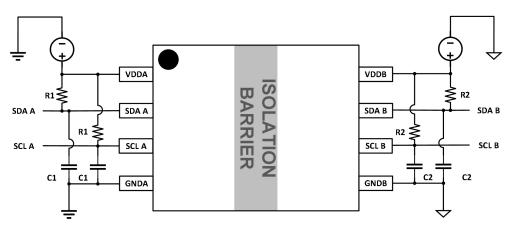
PARAMETER	TEST CONDITIONS		MIN TYP	MAX	UNIT
$3V \le V_{DDA}, V_{DDB} \le 3.6V$					
	$V_{SDAA} = V_{SCLA} = GNDA; V_{SDAB} = V_{SCLB} = GNDB;$	I _{DDA}	4.9	5.7	
ZMCIS3020	R1 = R2 = OPEN; C1 = C2 = OPEN	I _{DDB}	4.7	5.2	-
21010135020	$V_{SDAA} = V_{SCLA} = V_{DDA}; V_{SDAB} = V_{SCLB} = V_{DDB};$	I _{DDA}	2.4	2.8	
	R1 = R2 = OPEN; C1 = C2 = OPEN	DDB	2.2	2.6	mA
	$V_{SDAA} = V_{SCLA} = GNDA; V_{SDAB} = V_{SCLB} = GNDB;$	DDA	2.9	4.4	
ZMCIS3021	R1 = R2 = OPEN; C1 = C2 = OPEN	DDB	2.4	3.7	
21010135021	$V_{SDAA} = V_{SCLA} = V_{DDA}; V_{SDAB} = V_{SCLB} = V_{DDB};$	DDA	1.7	2.6	
	R1 = R2 = OPEN; C1 = C2 = OPEN	DDB	1.8	2.8	
$4.5V \le V_{DDA}, V_{DDB} \le 5.5V$					
	$V_{SDAA} = V_{SCLA} = GNDA; V_{SDAB} = V_{SCLB} = GNDB;$	DDA	5.0	5.7	
ZMCIS3020	R1 = R2 = OPEN; C1 = C2 = OPEN	DDB	4.7	5.2	
21010133020	$V_{SDAA} = V_{SCLA} = V_{DDA}$; $V_{SDAB} = V_{SCLB} = V_{DDB}$;	DDA	2.4	2.8	
	R1 = R2 = OPEN; C1 = C2 = OPEN	DDB	2.2	2.6	mA
7040(52021	$V_{SDAA} = V_{SCLA} = GNDA; V_{SDAB} = V_{SCLB} = GNDB;$	DDA	3.0	4.5	
	R1 = R2 = OPEN; C1 = C2 = OPEN	DDB	2.5	3.8	
ZMCIS3021	$V_{SDAA} = V_{SCLA} = V_{DDA}; V_{SDAB} = V_{SCLB} = V_{DDB};$	DDA	1.8	2.7	
	R1 = R2 = OPEN; C1 = C2 = OPEN	DDB	1.9	2.9	

7.10 Timing Requirements

PARAMETER	MIN	ТҮР	MAX	UNIT
t _{sP} Input noise filter	10	25		ns

ZMCIS3020, ZMCIS3021

Version 1.04


7.11 Timing Characteristics

Z-Micro

			EST CONDITIONS	MIN	ТҮР	MAX	UNI
3V≤(V _{DDA}	, V _{DDB}) ≤ 3.6V						
t _{fA}	Fall Time (SDAA, SCLA)	See Figure 8-1 R1 = 953Ω	A side input from 0.7 x V_{DDA} to 0.3 x V_{DDA}	18	23	28	
		C1 = 40pF	A side input from 0.9 x V _{DDA} to 900mV	32	40	48	
t _{fB}	Fall Time (SDAB, SCLB)	See Figure 8-1 R2 = 95.3Ω	B side input from 0.7 x V _{DDB} to 0.3 x V _{DDB}	12	16	20	
чв		C2 = 400pF	B side input from 0.9 x V_{DDB} to 400mV		30	60	
t _{PLHA-B}	Propagation Delay, Side A to Side B		A side input = 0.55V to B side output = 0.7 x V _{DDB}		100	135	
t _{phlab}	Propagation Delay, Side A to Side B		A side input = 0.7V to B side output = 0.4V		100	130	
PWD _{AB}	Pulse Width Distortion	See Figure 8-1 R1 = 953Ω	t _{phlab} - t _{plhab}		7	30	ns
t _{PLHBA} 1	Propagation Delay, Side B to Side A	R2 = 95.3Ω C1 = C2 = 10pF	B side input = 0.4 x V_{DDB} to A side output = 0.7 x V_{DDA}		80	100	
t _{phlba} 1	Propagation Delay, Side B to Side A		B side input = $0.4 \times V_{DDB}$ to A side output = $0.9V$		90	120	
PWD_{BA}^1	Pulse Width Distortion		t _{phlba} - t _{plhba}		5	20	
t _{loopa} 1	Loop propagation delay on Side A	See Figure 8-2 R1 = 953Ω C1 = 40pF R2 = 95.3Ω C2 = 400pF	A side input = 0.4V to A side output = 0.3 x V _{DDA}		200	220	
4.5V ≤ (V _D	_{DDA} , V _{DDB}) ≤ 5.5V						
+	Fall Time (SDAA, SCLA)	See Figure 8-1 R1 = 1430Ω	A side input from 0.7 x V_{DDA} to 0.3 x V_{DDA}	10	12	14	
t _{fA}		C1 = 40pF	A side input from 0.9 x V_{DDA} to 900mV	40	50	60	
+	Fall Time (SDAB, SCLB)	See Figure 8-1 R2 = 143Ω	B side input from 0.7 x V_{DDB} to 0.3 x V_{DDB}	8	10	12	
t _{fB}		C2 = 400pF	B side input from 0.9 x V_{DDB} to 400mV	20	28	36	
t _{plhab}	Propagation Delay, Side A to Side B		A side input = 0.55V to B side output = $0.7 \times V_{DDB}$		100	120	
t _{phlab}	Propagation Delay, Side A to Side B		A side input = 0.7V to B side output = 0.4V		70	90	
PWD _{AB}	Pulse Width Distortion	See Figure 8-1 R1 = 1430Ω	t _{phlab} - t _{plhab}		30	45	ns
t _{PLHBA} 1	Propagation delay, side B to side A	R2 = 143Ω C1 = C2 = 10pF	B side input = $0.4 \times V_{DDB}$ to A side output = $0.7 \times V_{DDA}$		110	130	
t _{PHLBA} 1	Propagation delay, Side B to side A		B side input = $0.4 \times V_{DDB}$ to A side output = $0.9V$		100	150	
PWD_{BA}^{1}	Pulse Width Distortion		t _{phlba} - t _{plhba}		8	20	
t _{loopa} 1	Loop propagation delay on side A	See Figure 8-2 R1 = 1430Ω C1 = 40pF R2 = 143Ω C2 = 400pF	A side input = 0.4V to A side output = 0.3 x V _{DDA}		210	230	

8 Parameter Measurement Information

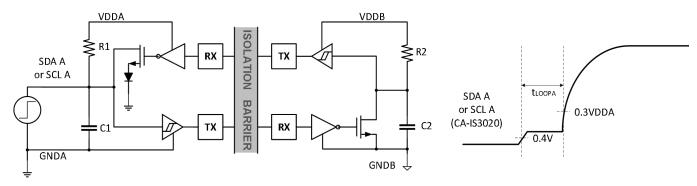


Figure 8-2 t_{LOOPA} Test Circuit and Timing Diagram

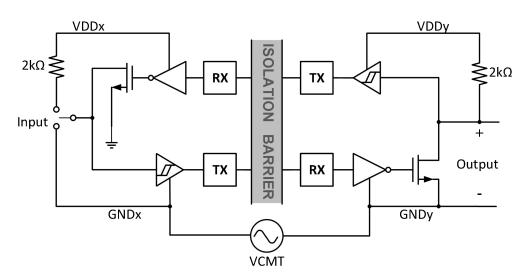


Figure 8-3 Common-Mode Transient Immunity Test Circuit

9 Detailed Description

9.1 Overview

The ZMCIS302x family of devices is complete dual-channel, bidirectional galvanic digital isolators with up to $3.75kV_{RMS}$ (narrow-body package), $5kV_{RMS}$ (wide-body package) and $7.5kV_{RMS}$ (super wide-body package) isolation rating and $\pm 150kV/\mu$ s typical CMTI. All devices have Schmitt trigger inputs for high noise immunity and each isolation channel has logic input and output buffer separated by capacitive silicon dioxide (SiO₂) insulation barrier. The ZMCIS3020 offers two bidirectional, opendrain channels for applications, such as multi-master I²C, that require data and clock to be transmitted in both directions on the same line. The ZMCIS3021 provides an isolated I²C compatible interface supporting master mode only, with a unidirectional clock (SCL), and bidirectional data (SDA). All devices can support up to 2.0MHz operating frequency and feature independent 3.0V to 5.5V supplies (V_{DDA} and V_{DDB}) on each side of the isolator to setup the logic levels independently on either side, see Table 9-1 for the ZMCIS302x key features.

The ZMCIS302x family are specified over the -40°C to +125°C operating temperature range. The wide temperature range and high isolation voltage make the devices ideal for use in harsh industrial environments.

PART NUMBER	CHANNEL DIRECTION	RATED ISOLATION ¹	MAXIMUM FREQUENCY			
ZMCIS3020	Bidirectional (SCL) Bidirectional (SDA)	Narrow-body package: 3750V _{RMS} Wide-body package: 5000V _{RMS} Super wide-body package: 7500V _{RMS}	2MHz			
7040102021	Unidirectional (SCL)	Narrow-body package: 3750V _{RMS}				
ZMCIS3021	Bidirectional (SDA)	Wide-body package: 5000V _{RMS}				
Note:						
1. For more details, please see the <i>Insulation Specifications</i> table.						

Table 9-1 key Features

9.2 Functional Block Diagrams

Compared with inductive isolation, the ZMCIS302x devices based on capacitive isolation can get low power at high frequency operation, reduces propagation delay and jitter, and provide good immunity to magnetic fields. See Figure 9-1 and Figure 9-2 the ZMCIS302x function block diagram for more details. To build the bidirectional signal path, the ZMCIS302x integrated two unidirectional isolated signal lines for each bidirectional line. All of output channels provide open-drain output to comply with the standard I²C interface. Side A is designed to connect to the low capacitance I²C node with up to 40pF of load capacitance, while side B is designed for connecting to a fully loaded I²C bus with up to 400pF of load capacitance.

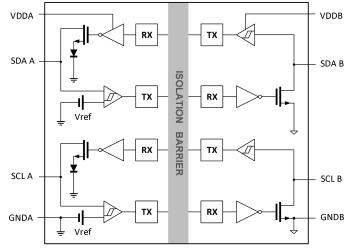


Figure 9-1 The Block Diagram for ZMCIS3020

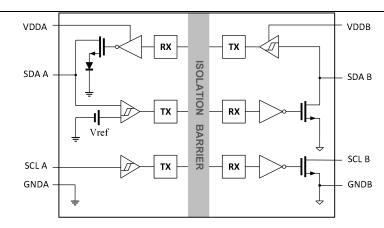


Figure 9-2 The Block Diagram for ZMCIS3021

9.3 Device Operation Modes

Table 9-2 lists the ZMCIS302x functional modes. For optimal performance, ensure that the load capacitance on side A (C_A) is \leq 40pF, and the load capacitance on side B (C_B) is \leq 400pF. The maximum static output loading on side A is 3.5mA, while on side B, the maximum static output current is 35mA. For the bidirectional isolation channels, to prevent latch-up action, the A-side outputs comprise special buffers that regulate the logic-low voltage at approximately 700mV, and the maximum input logic-low voltage is 400mV. The internal comparator with hysteresis determines whether the logic-low level comes from the input or output based on the logic-low voltages at SDAA and SCLA pins. This prevents an output logic-low on side A from being accepted as an input low and subsequently transmitted to side B and thus preventing a latching action. The B side features conventional buffers that do not regulate logic-low output voltage. A logic-low on one side causes the corresponding pin on the other side to be pulled low while avoiding data latching within the device.

The V_{DDA} and V_{DDB} supplies are both internally monitored for undervoltage conditions with 1.95V minimum threshold and 2.53V maximum threshold. Undervoltage events can occur during power-up, power-down, or during normal operation due to a sagging supply voltage. When an undervoltage event is detected on either of the supplies ($V_{DDA} \le 1.95V$ or/and $V_{DDB} \le 1.95V$), all bidirectional outputs become high-impedance and are pulled high by the external pullup resistor on the open-drain outputs.

Table 9-2	Truth	Table
-----------	-------	-------

POWER STATE	INPUT	OUTPUT				
V_{DDA} or $V_{DDB} < 1.95V$	Х	Hi-Z				
V_{DDA} and $V_{DDB} > 2.53V$	L	L				
V_{DDA} and $V_{DDB} > 2.53V$	Н	Hi-Z				
V_{DDA} and $V_{DDB} > 2.53V$	Hi-Z ²	Indeterminate				
Notes:						
1. X = don't care; H = high level; L = low level; Hi-Z = high impedance.						

1. X = don't care; H = high level; L = low level; Hi-Z = high impedance.

2. Invalid input condition as an I²C system requires that a pull-up resistor to VDD_ is connected on the bus.

10 Application and Implementation

10.1 Overview

The Inter IC (I²C) bus is a simple, 2-wire bus for communication between different ICs (system controller, remote sensor, actuator etc. circuitry). 2-wire interfaces use only a data line (SDA) and a clock line (SCL) and allow to connect multiple slaves on the same bus without needing chip-select signals. Because 2-wire interfaces have only one data line, they can operate in half-duplex mode only, this means data can only be transmitted or received on a given cycle, also, the data line should be bidirectional. For the multi-master I²C applications, both data and clock lines need to transmit in both directions on the same line. The ZMCIS302x family of digital isolators offers two bidirectional channels (ZMCIS3020) or one unidirectional channel for clock and one bidirectional channel for data (ZMCIS3021), is ideal for use in I²C bus to provide the required isolation between different ground potentials of the system circuitry to prevent ground loop currents that otherwise may falsify the acquired

ZMCIS3020, ZMCIS3021 Version 1.04

data. The I²C bus can operate in Standard mode, Fast mode, or High-speed mode, with maximum data rates of 100kbps (Standard mode), 400kbps (Fast mode), 1.7Mbps (High-speed mode with C_{bus} = 400pF). The ZMCIS302x digital isolators can support up to 2.0MHz operating frequency, thus can support most of I²C communication applications.

10.2 Typical Application

The ZMCIS302x isolation ICs provide complete galvanic isolation between two power domains, protecting circuits from high common-mode transients and faults, eliminating ground loops. These devices do not require special power-supply sequencing, the logic levels are set independently on either side by V_{DDA} and V_{DDB} . The SDAA, SCLA, SDAB, SCLB pins have open-drain outputs, requiring pull-up resistors to their respective supplies for logic-high outputs. The output low voltages are guaranteed for sink currents of up to 35mA for side B, and 3.5mA for side A. So the minimum pullup resistors on the input lines must be selected in such a way that input current drawn is \leq 3.5mA on side A and output current drawn is \leq 35mA on side B. The maximum pull-up resistors on the input lines and output lines depend on the load and rise time requirements on the respective lines.

To reduce ripple and the chance of introducing data errors, bypass V_{DDA} and V_{DDB} with at least 0.1μ F low-ESR ceramic capacitors to GNDA and GNDB respectively. Place the bypass capacitors as close to the power supply input pins as possible. Figure 10-1 and Figure 10-2 show typical operating circuit of the ZMCIS3020 and ZMCIS3021.

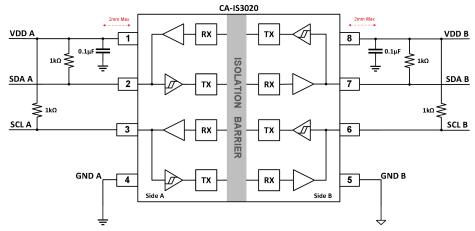
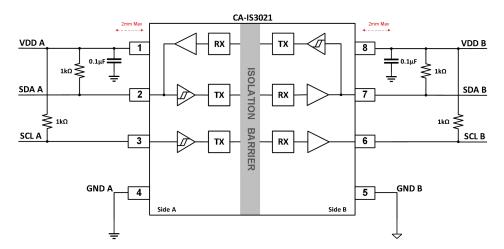
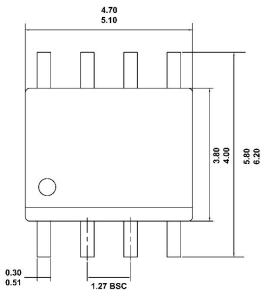
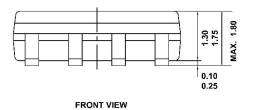
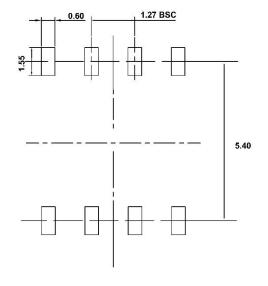


Figure 10-1 The Typical Application Circuit for ZMCIS3020

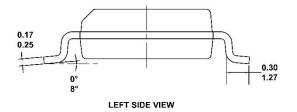


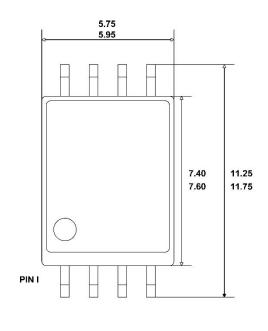

Figure 10-2 The Typical Application Circuit for ZMCIS3021


11 Package Information

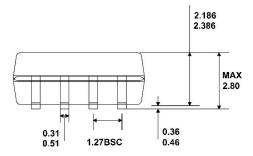

11.1 SOIC8 (S) Package

The values for the dimensions are shown in millimeters.

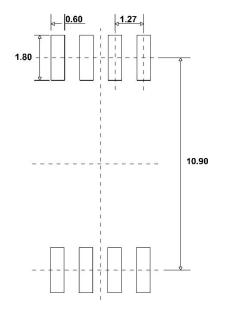


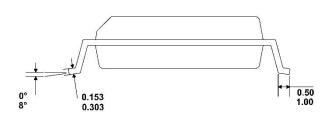


RECOMMENDED LAND PATTERN



11.2 SOIC8-WB (G) Package

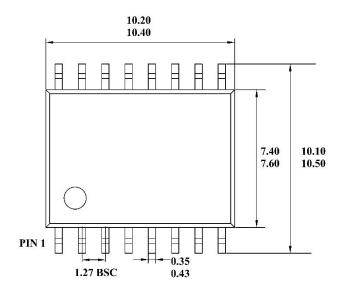

The values for the dimensions are shown in millimeters.

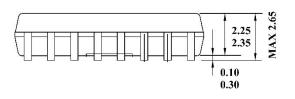


FRONT VIEW

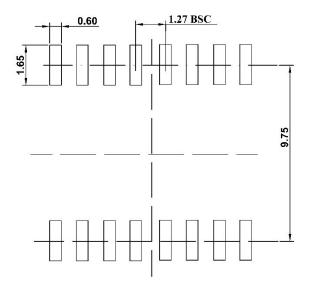
Z-Micro

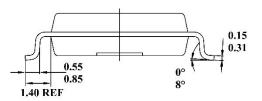
RECOMMENDED LAND PATTERN



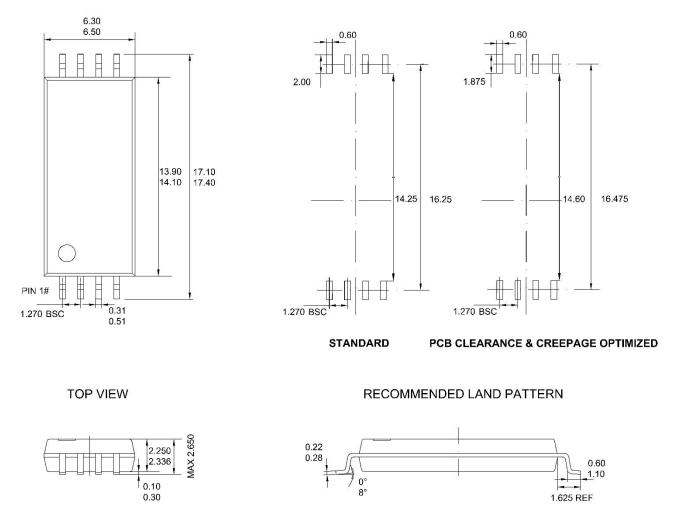


11.3 SOIC16-WB (W) Package


The values for the dimensions are shown in millimeters.


TOP VIEW

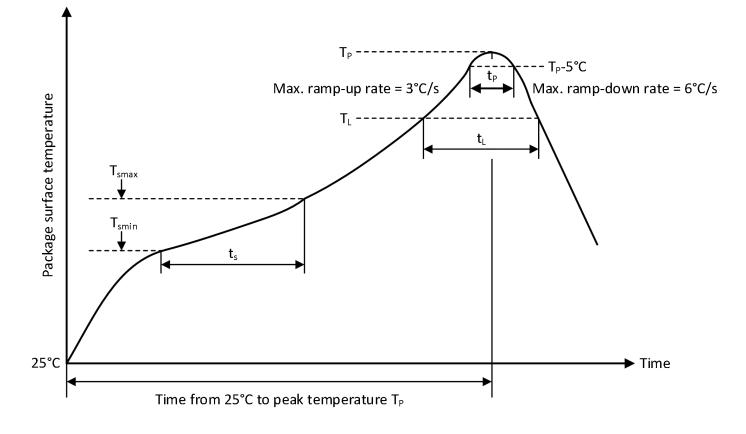
FRONT VIEW

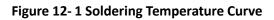

RECOMMENDED LAND PATTERN

LEFT SIDE VIEW

11.4 SOIC8-WWB (WG) Package

The values for the dimensions are shown in millimeters.




FRONT VIEW

SIDE VIEW

Z-Micro

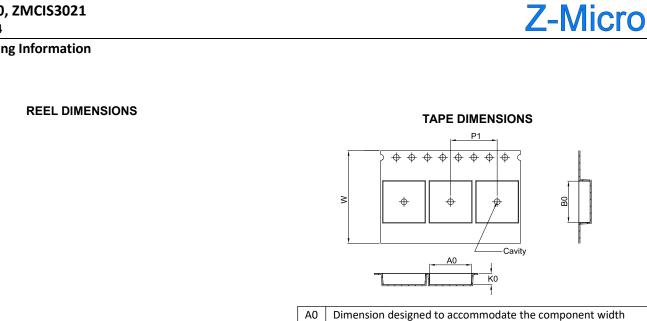


Table 12-1 Soldering Temperature Parameters	
---	--

Profile Feature	Pb-Free Soldering
Ramp-up rate ($T_L = 217^{\circ}C$ to peak T_P)	3°C/s max
Time t _s of preheat temp (T _{smin} = 150°C to T _{smax} = 200°C)	60~120 seconds
Time t _L to be maintained above 217°C	60~150 seconds
Peak temperature T _P	260°C
Time t _P within 5°C of actual peak temp	30 seconds max
Ramp-down rate (peak T_P to $T_L = 217^{\circ}C$)	6°C/s max
Time from 25°C to peak temperature T _P	8 minutes max

13 Soldering Information

Reel Diameter

B0

К0

W QUADRANT ASSIGNMENTS FOR PIN 1 PRIENTATION CONSTANT ASSIGNMENTS FOR PIN 1 PRIENTATION CONSTANT

Dimension designed to accommodate the component length

Overall width of the carrier tape

Dimension designed to accommodate the component thickness

$ \begin{array}{c} $	⊖ – Sprocket Holes
$ \phi + \phi + \phi$	User Direction of Feed
Pocket Quadrants	

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	В0 (mm)	КО (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ZMCIS3020S	SOIC	S	8	2500	330	12.4	6.40	5.40	2.10	8.00	12.00	Q1
ZMCIS3020G	SOIC	G	8	1000	330	16.4	11.95	6.15	3.20	16.00	16.00	Q1
ZMCIS3021S	SOIC	S	8	2500	330	12.4	6.40	5.40	2.10	8.00	12.00	Q1
ZMCIS3021G	SOIC	G	8	1000	330	16.4	11.95	6.15	3.20	16.00	16.00	Q1
ZMCIS3020W	SOIC	W	16	1000	330	16.4	10.90	10.70	3.20	12.00	16.00	Q1
ZMCIS3021W	SOIC	W	16	1000	330	16.4	10.90	10.70	3.20	12.00	16.00	Q1
ZMCIS3020WG	SOIC	WG	8	500	330	16.4	17.70	6.80	2.80	24.00	16.00	Q1