5A, Dual-Channel, High-Speed, Low-Side, Gate-Driver

Description

The ZMCS5025 device is a dual-channel, high-speed, low-side, gate-driver device capable of effectively driving MOSFET and IGBT power switches. the ZMCS5025 is capable of delivering high-peak current pulses of up to 5A source and 5A sink into capacitive loads along with rail-to-rail drive capability and extremely small propagation delay typically 13ns.

The ZMCS5025 driver feature matched internal propagation delays between the two channels which are very well suited for applications requiring dual-gate drives with critical timing, such as synchronous rectifiers. This also enables connecting two channels in parallel to effectively increase current drive capability or driving two switches in parallel with a single input signal. The input pin thresholds are based on TTL logic, and the input can withstand a maximum supply voltage. Wide hysteresis between the high thresholds offers excellent noise and low immunity

Applications

- Switch-mode power supplies
- DC-to-DC converters

Typical Application

Motor control

Features

- > Two independent gate-drive channels
- > 5A peak source and sink-drive current
- > Independent-enable function for each output
- TTL and CMOS compatible logic threshold independent of supply voltage
- Hysteretic-logic thresholds for high noise immunity
- Inputs and enable pin-voltage levels not restricted by VDD pin bias supply voltage
- > 4.5V to 24V single-supply range
- Outputs held low during VDD-UVLO ensures glitch-free operation at power up and power down
- > Fast propagation delays (13ns typical)
- Fast rise and fall times
- Ins typical delay matching between two channels
- Two outputs are paralleled for higher drive current
- > Outputs held in low when inputs floating

ZMCS5025

Ordering Information

Tube	Tape and reel	Form factor	Packing
ZMCS5025	ZMCS5025M	eMSOP8	Taping/barrel
	ZMCS5025S	SOP8	Taping/barrel
	ZMCS5025N	DFN3X3-8L	Taping

Pin Functions

Pin	Name	Description
1	ENA	Enable input for Channel A
2	INA	Input to Channel A
3	GND	Ground
4	INB	Input to Channel B
5	OUTB	Output of Channel B
6	VDD	Supply input
7	OUTA	Output of Channel A
8	ENB	Enable input for Channel B
9	EP	Exposed pad, SOP8 Package None

Pin Functions

Pin	Name	Description
1	ENA	Enable input for Channel A
2	INA	Input to Channel A
3	GND	Ground
4	INB	Input to Channel B
5	OUTB	Output of Channel B
6	VDD	Supply input
7	OUTA	Output of Channel A
8	ENB	Enable input for Channel B

Pin Functions

Pin	Name	Description
1	ENA	Enable input for Channel A
2	INA	Input to Channel A
3	GND	Ground
4	INB	Input to Channel B
5	OUTB	Output of Channel B
6	VDD	Supply input
7	OUTA	Output of Channel A
8	ENB	Enable input for Channel B
9	EP	Exposed pad, SOP8 Package None

Block Diagram

Device Logic Table

ENA	ENB	INA	INB	OUTA	OUTB
Н	Н	L	L	L	L
Н	Н	L	Н	L	Н
Н	Н	Н	L	Н	L
Н	Н	Н	Н	Н	Н
L	L	Any	Any	L	L
Any	Any	Х	Х	L	L
Х	Х	L	L	L	L
Х	Х	L	Н	L	Н
X	Х	Н	L	Н	L
X	Х	Н	Н	Н	Н

Absolute Maximum Ratings

0.3V~24V
0.3V~V _{DD} +0.3V
0.3V~V _{DD} +0.3V
5V~V _{DD} +0.3V
0.3A

I _{OUT_pulsed} current	5A
Junction Temperature	150°C
Storage Temperature	55°C~+150°C
ESD Rating Human Body Model	±2KV

(1) Exceeding the maximum operating range can cause permanent damage to the chip. These are stress ratings only and do not imply that the chip functions beyond the specified conditions under these or any other conditions. Working at limit values for long periods of time may affect the reliability of the chip.

Operating Ratings ⁽¹⁾

Parameter	Min	Мах	Units
Supply voltage, VDD	4.5	20	V
Input voltage, INA, INB	0	20	V
Enable voltage, ENA and ENB	0	20	V
Operating Junction Temperature	-40	125	°C

(1) Recommended operating conditions refer to the conditions under which the chip operates normally. For accurate specifications and test conditions, please refer to Electrical Characteristics.

Dynamic Parameter

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
BIAS CURREN	ITS					
	Stant un aurrent	V _{DD} =3.4V, INA=V _{DD} , INB=V _{DD}	55	110	175	11 (
100 (011)	Start-up current	V _{DD} =3.4V, INA=GND, INB=GND	25	75	145	uA
UNDERVOLTAG	E LOCKOUT (UVLO)				1	
VDDON	Supply open threshold	TJ=25℃	3.91	4.20	4.50	
		TJ=−55℃~125℃	3.70	4.20	4.65	V
VDDOFF	Supply close threshold		3.40	3.90	4.40	
VDD_Hys	Supply voltage hysteresis		0.20	0.30	0.50	
INPUT (INA,	INB)			1	1	
VIN_H	Input signal high threshold		1.9	2.1	2.3	
VIN_L	Input signal low threshold		1.0	1.2	1.4	V
VIN_HYS	Input hysteresis		0.70	0.90	1.10	
OUTPUT (OUT	A, OUTB)				1	
ISNK/ISRC	Peak current (1)	$C_{\text{LOAD}}=0.22\mu\text{F}$, $F_{\text{SW}}=1\text{kHz}$		±5		А
VDD-VOH	High output voltage	$I_{OUT} = -10 \text{mA}$			0.075	V
VOL	Low output voltage	$I_{OUT} = 10 \text{mA}$			0.01	v
ROH	Output pullup resistance	I_{OUT} =-10mA	2.5	5	7.5	Ω
ROL	Output pulldown resistance	I _{OUT} =10mA	0.15	0.5	1	Ω
SWITCHING T	`IME					
Tr	Rise time	C _{LOAD} =1.8nF		7	18	
Tf	Fall time	C _{LOAD} =1.8nF		6	10	
TM	Delay matching between	INA = INB, OUTA and OUTB at 50% transition point		1	4	
two	INA = INB, OUTA and OUTB at 50%			1.5	0.5	ns
channels	transition point			15	20	
TPW	Minimum input pulse width that	CLOAD=1.8nF, 5-V	6	13	23	
TD1, TD2	Input to output propagation	CLOAD=1.8nF, 5-V enable pulse	6	13	23	

Unless otherwise noted, VDD=12V, $1-\mu F$ capacitor from VDD to GND, T=25°C.

(1) Design Assurance.

Timing Diagrams

Figure 2. Input-Output Operation

Application Information

- For the best high-speed circuit performance, two VDD bypass capacitors are recommended to prevent noise problems. The use of surface mount components is highly recommended. A 0.1µF ceramic capacitor must be located as close as possible to the VDD to GND pins of the gate-driver device. In addition, a larger capacitor (such as 1µF) with relatively low ESR must be connected in parallel and close proximity, in order to help deliver the high-current peaks required by the load. The current loop between the load and the capacitor and the current loop between the control signal and the capacitor should be independent of each other, and the two current loops are not allowed to cross.
- > In order to ensure the stability of the control signal and the safe operation of the chip, it is recommended to connect a protection resistor in series with each of the input control pins, and the value of the resistor ranges from 50Ω to 200Ω .
- Drive output pull-up current channel should be connected in series with a current limiting resistor, the value of which ranges from 10 ohms to 500 ohms. The pull-down current channel is shorted by a forward diode to the current limiting resistor, which can be omitted if the pull-down speed is not strictly required.
- The ENA pin and ENB pin of the chip contain internal resistors to pull up to VDD, if you don't use this control function, you can leave these two pins empty, and the chip is turned on by default.

Pod Diagram

eMSOP8

A# 13		单位(毫米)	
符专	最小值	常规值	最大值
A	-		1.10
A1	0.05	-	0.15
A2	0.75	0.85	0.95
A3	0.30	0.35	0.40
b	0.28		0.36
b1	0.27	0.30	0.33
С	0.15	-	0.19
c1	0.14	0.15	0.16
D	2.90	3.00	3.10
E	4.70	4.90	5.10
E1	2.90	3.00	3.10
е		理论值0.65	
L	0.40		0.70
L1		参考值0.95	
Θ	0.	-	8'
L/F 載体尺寸 (mil)	D2 E2		
71*71	参考值1.80	参考值	1.55

Pod Diagram(continued)

SOP8

符号	单位(毫米)				
	最小值	常规值	最大值		
А	_	-	1.750		
A1	0.100		0.225		
A2	1.300	1.400	1.500		
A3	0.600	0.650	0.700		
b	0.390	-	0.470		
b1	0.380	0.410	0.440		
С	0.200	· · ·	0.240		
c1	0.190	0.200	0.210		
D	4.800	4.900	5.000		
E	5.800	6.000	6.200		
E1	3.800	3.900	4.000		
е		理论值1.27			
h	0.250	-	0.500		
L	0.500		0.800		
L1		参考值1.05			
Θ	0.		8'		

Pod Diagram(continued)

DI	ΓN	2	40	\sim	Q
17	1 ' I N		个.)	$^{\circ}$

符号	単位(毫米)		
	最小值	常规值	最大值
A	0.70	0.75	0.80
A1	0.00	0.02	0.05
b	0.25	0.30	0.35
b1	参考值0.20		
с	0.18	0.20	0.25
D	2.90	3.00	3.10
D2	2.40	2.50	2.60
e	理论值0.65		
Nd	理论值1.95		
E	2.90	3.00	3.10
E2	1.45	1.55	1.65
L	0.30	0.40	0.50
L1	参考值0.05		
L2	参考值0.10		
h	0.20	0.25	0.30
L/F载体尺寸 (mil)	106*75		