

Precision, Zero-Drift, Rail-to-Rail Out, High-Voltage(32V) Operational Amplifier

1 Features

- Gain-Bandwidth Product:2.0MHz
- Low Offset Voltage:50µV (Max)
- Input Offset Drift: ±0.15μV/°C
- Low Input Niose:0.6µVpp (0.1Hz to 10Hz)
- Low Supply Current:4mA (TYP)
- Rail to Rail Output
- Excellent DC Precision:
 - -PSRR:130dB
 - -CMRR:120dB
 - -Open-Loop Gain:130dB
- Single-Supply Operation: 3.3V to 32V
 Dual-Supply Operation: ±1.65V to ±16V
- Specified up to +125°C
- Packages: SOIC-14(SOP14)

2 Applications

- Temperature Measurements
- Semiconductor Test
- Pressure Sensors
- Medical Equipment
- Test Equipment
- Driving A/D Converters
- Precision Current Sensing

3 Descriptions

The ZM8654 operational amplifier use auto-zero techniques to simultaneously provide very low offset voltage (50µV max) and near-zero drift over time and temperature. This family of amplifiers has ultra-low noise, offset and power.

This miniature, high-precision operational amplifiers offset high input impedance and rail-to-rail output swing. With high gain-bandwidth product of 2.0MHz and slew rate of $1.0V/\mu s$. Either single or dual supplies can be used in the range from 3.3V to 32V ($\pm 1.65V$ to $\pm 16V$).

The ZM8654 operational amplifier is specified at the full temperature range of −40°C to +125°C.

Device Information (1)

_		··· (·)		
PART NUMBER	PACKAGE	BODY SIZE(NOM)		
ZM8654	SOIC-14 (SOP14)	8.65mm×3.90mm		

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

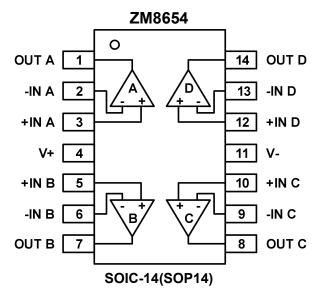
Rev A.1 1 / 14

Table of Contents

1 Features	1
2 Applications	1
3 Descriptions	1
4 Revision History	3
3 Descriptions	4
6 Pin Configuration and Functions (Top View)	5
7 Specifications	6
7.1 Absolute Maximum Ratings	6
7.2 ESD Ratings	6
7.3 Recommended Operating Conditions	6
7.4 Electrical Characteristics	7
7.5 Typical Characteristics	9
8 Package Outline Dimensions	12
9 Tape and Reel Information	

4 Revision HistoryNote: Page numbers for previous revisions may different from page numbers in the current version.

VERSION	Change Date	Change Item
A.1	2022/12/05	Initial version completed



5 Package/Ordering Information (1)

Orderable Device	Package Type	Pin	Channel	Op Temp(°C)	Device Marking ⁽²⁾	MSL (3)	Package Qty
ZM8654XP	SOIC-14(SOP14)	14	4	-40°C ~125°C	ZM8654	MSL3	Tape and Reel,4000

- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.
- (3) The MSL level with using the common preconditioning setting in our assembly factory conforming to the JEDEC industrial standard J-STD-20F.

6 Pin Configuration and Functions (Top View)

Pin Description

NAME	PIN	I/O ⁽¹⁾	DESCRIPTION			
INAIVIE	SOIC-14(SOP14)	1,0 (")	DESCRIPTION			
-INA	2	I	Inverting input, channel A			
+INA	3	I	Noninverting input, channel A			
-INB	6	I	Inverting input, channel B			
+INB	5	I	Noninverting input, channel B			
-INC	9	I	Inverting input, channel C			
+INC	10	I	Noninverting input, channel C			
-IND	13	I	Inverting input, channel D			
+IND	12	I	Noninverting input, channel D			
OUTA	1	0	Output, channel A			
OUTB	7	0	Output, channel B			
OUTC	8	0	Output, channel C			
OUTD	14	0	Output, channel D			
V-	11	-	Negative (lowest) power supply			
V+	4	-	Positive (highest) power supply			

⁽¹⁾ I = Input, O = Output.

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT	
	Supply Vo=(V±) (V)	Dual supply		±18		
	Supply, Vs=(V+) - (V-)	Single supply		36		
Voltage	Signal input pin (2)	Common-mode voltage	(V-)-0.5	(V+) +0.5	V	
	Signal input pin (-)	Differential voltage		±0.7	7	
	Signal output pin ⁽³⁾	(V-)-0.5	(V+) +0.5			
	Signal input pin ⁽²⁾	-10	10	mA		
Current	Signal output pin ⁽³⁾	-50	50	mA		
	Output short-circuits (4)	Conti	nuous			
θ_{JA}	Package thermal impedance (5)	SOIC-14(SOP14)		105	°C/W	
	Operating range, T _A	rating range, T _A				
Temperature	Junction, T _J ⁽⁶⁾	-40	150	°C		
	Storage, T _{stg}		-65	150]	

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

- (4) Short-circuit to ground, one amplifier per package.
- (5) The package thermal impedance is calculated in accordance with JESD-51.
- (6) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.

7.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±3000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1500	V
		Machine Model (MM)	±500	

⁽¹⁾ JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

7.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
Supply voltage V-= (V+) (V)	Single-supply	3.3		32	\/
Supply voltage, $V_S = (V+) - (V-)$	Dual-supply	±1.65		±16	\ \ \

⁽²⁾ Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less.

⁽³⁾ Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.5V beyond the supply rails should be current-limited to ±50mA or less.

7.4 Electrical Characteristics

At T_A = +25°C, V_S =3.3V to 32V, R_L = 10k Ω connected to V_S /2, and V_{CM} = V_{OUT} = V_S /2, Full $^{(9)}$ = -40°C to +125°C (unless otherwise noted) $^{(1)}$

	PARAMETER	CONDITIONS	T .		UNIT			
	PARAMETER	CONDITIONS	TJ	MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT	
POWER	SUPPLY							
Vs	Operating Voltage Range		25°C	3.3		32	V	
	Quippont Current	\/ = 10 E\/ la=0m4	25°C		4.0	5.6		
10		V _S =±2.5V, Io=0mA	Full			6.0	mA	
IQ	Quiescent Current	\/ \(\(\(\) \(25°C		5.0	8.0		
		V _S =±16V, Io=0mA	Full			10.0]	
DODD	Power-Supply Rejection	\/ \F\/\ \ 00\/	25°C	110	130		I.D.	
PSRR Ratio		V _S =5V to 32V	Full	100			dB	
INPUT								
Vos	Input Offset Voltage	V _{CM} = V _S /2	25°C	-50	±3	50	/	
VUS	Input Offset Voltage	VCM- VS/Z	Full		±25		μV	
Vos Tc	Input Offset Voltage Average Drift	V _{CM} = V _S /2	Full		±0.15		μV/°C	
IB	Input Bias Current (4) (5)	V _{CM} =0V	25°C		100	1000	pA	
10	Input bias Guirent (/ / /	V CM-O V	Full		600			
los	Input Offset Current (4)	V _{CM} =0V	25°C		100		pА	
ios	·	V CM-UV	Full		600		PA	
V _{СМ}	Common-Mode Voltage Range	V _S = ±16V	25°C	(V-)		(V+)-1.5	V	
CMRR	Common-Mode Rejection	V _S = ±16V	25°C	95	120		dB	
OWNAR	Ratio	V _{CM} =(V-)+0.3 to (V+)-1.5V	Full	90				
OUTPUT	•	1		1				
A_{OL}	Open-Loop Voltage Gain	R _L =10KΩ	25°C	100	130		dB	
/ IOL	Open-Loop Vollage Gain	$V_0 = (V-)+0.4V$ to $(V+)-0.4V$	Full	90				
V _{OH}	Output Swing from Rail	$V_S=\pm 16V$, $R_L=10K\Omega$	25°C	15.80			V	
V_{OL}	Output Swing Iron Itali	V5-110V, IXL-10IX22	25°C			-15.70	V	
Isc	Short-Circuit Current (6) (7)	V _S =±2.5V, Vo=0V	25°C	15	20		- mA	
ISC	Short-Circuit Current (7)	V _S =±16V, Vo=0V	25 C	60	80			
Ro	Open-Loop Output Impedance (4)	f=1MHz, Io=0mA			120		Ω	
C_{LOAD}	Capacitive Load Drive (4)				1		nF	
FREQUE	NCY RESPONSE							
SR	Slew Rate (8)	V _S =±2.5V, G=+1, C _L =100pF	25°C		1.0		V/µs	
GBW	Gain-Bandwidth Product	V _S =±2.5V	25°C		2.0		MHz	
ts	Settling Time,0.1%	V _S =±2.5V, G=+1, C _L =100pF, Step=2V	25°C		6.6		μs	
tor	Overload Recovery Time	V _{IN} ·Gain≥V _S , G=-10	25°C		1.6		μs	
NOISE								
En	Input Voltage Noise	f = 0.1Hz to 10Hz, V _S =±2.5V	25°C		0.6		μVpp	
	Input Voltage Noise	f = 1KHz	2500		30		\ // /**	
en	Density (4)	f = 10KHz	25°C		14		nV/√H:	

- (1) Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device.
- (2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.
- (4) This parameter is ensured by design and/or characterization and is not tested in production.
- (5) Positive current corresponds to current flowing into the device.
- (6) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is PD = $(T_{J(MAX)} T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.
- (7) Short circuit test is a momentary test.
- (8) Number specified is the slower of positive and negative slew rates.
- (9) Specified by characterization only.

7.5 Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

At T_A =-40°C to 125°C, V_S=5V, R_L = 10k Ω connected to V_S/2, V_{OUT} = V_S/2, unless otherwise noted.

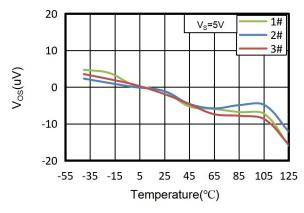


Figure 1. Offset Voltage vs Temperature

Figure 2. Offset Voltage vs Temperature

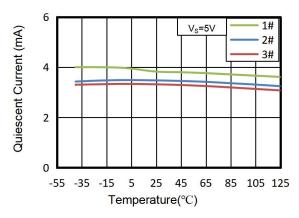
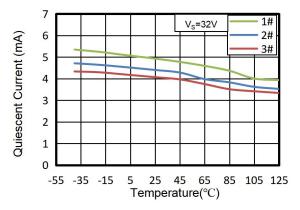



Figure 3. Supply Voltage vs Quiescent Current

Figure 4. Quiescent Current vs Temperature

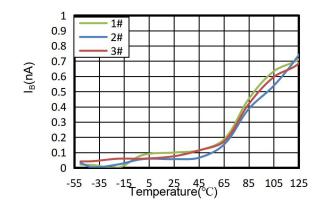


Figure 5. Quiescent Current vs Temperature

Figure 6. Input Bias Current vs Temperature

Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

At T_A =-40°C to 125°C, Vs=5V, R_L = 10k Ω connected to $V_S/2$, V_{OUT} = $V_S/2$, unless otherwise noted.

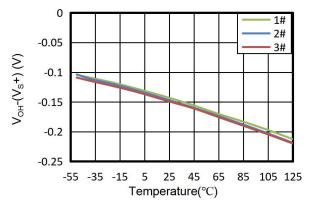


Figure 7. Output Swing From Rail vs
Temperature

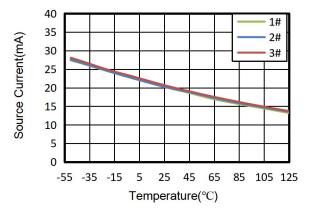


Figure 9. Source Current vs Temperature

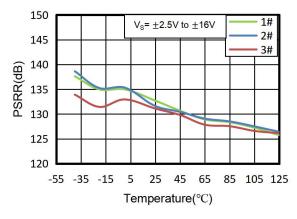


Figure 11. Power-Supply Rejection Ratio vs Temperature

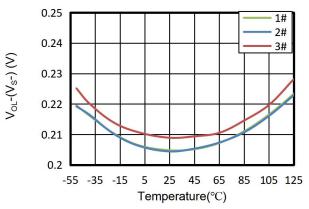


Figure 8. Output Swing From Rail vs
Temperature

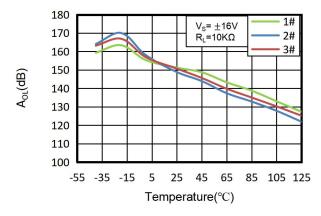


Figure 10. Open-Loop Gain vs Temperature

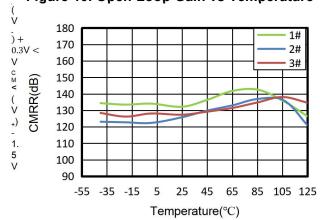
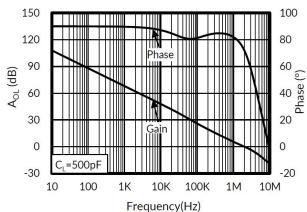
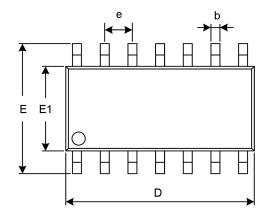
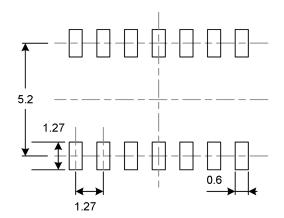
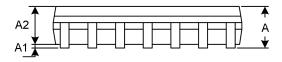


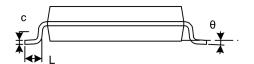
Figure 12. Common-Mode Rejection Ratio vs
Temperature

Typical CharacteristicsNOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

At T_A =-40°C to 85°C, V_S =5V, R_L = 10k Ω connected to $V_S/2$, V_{OUT} = $V_S/2$, unless otherwise noted.

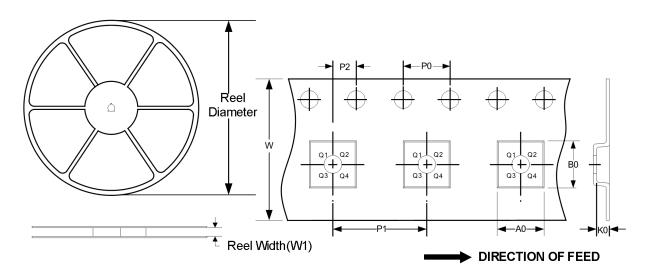





Figure 13. Open-Loop Gain and Phase vs Frequency


8 Package Outline Dimensions SOIC-14(SOP14)

RECOMMENDED LAND PATTERN (Unit: mm)

Cymphol	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
А	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.350 1.550 0.053 0.310 0.510 0.012		0.061
b	0.310			0.020
С	0.100	0.250	0.004	0.010
D	8.450	8.850	0.333	0.348
е	1.270	(BSC)	0.050	(BSC)
Е	5.800	6.200	0.228	0.244
E1	3.800	4.000	0.150	0.157
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°


- A. This drawing is subject to change without notice.
- B. Plastic or metal protrusions of 0.15mm maximum per side are not included.

 C. BSC: Basic Dimension. Theoretically exact value shown without tolerances.

9 Tape and Reel Information

REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-14(SOP14)	13"	16.4	6.60	9.30	2.10	4.0	8.0	2.0	16.0	Q1

^{1.} All dimensions are nominal.

^{2.} Plastic or metal protrusions of 0.15mm maximum per side are not included.

IMPORTANT NOTICE AND DISCLAIMER

Z-Micro will accurately and reliably provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design advice, WEB tools, safety information and other resources, without warranty of any defect, and will not make any express or implied warranty, including but not limited to the warranty of merchantability Implied warranty that it is suitable for a specific purpose or does not infringe the intellectual property rights of any third party.

These resources are intended for skilled developers designing with Z-Micro products You will be solely responsible for: (1) Selecting the appropriate products for your application; (2) Designing, validating and testing your application; (3) Ensuring your application meets applicable standards and any other safety, security or other requirements; (4) Z-Micro and the Z-Micro logo are registered trademarks of Z-Micro. All trademarks are the property of their respective owners; (5) For change details, review the revision history included in any revised document. The resources are subject to change without notice. Our company will not be liable for the use of this product and the infringement of patents or third-party intellectual property rights due to its use.