

36V, 11MHz Rail-to-Rail Output Zero Drift Operational Amplifier

1 Features

Low Offset Voltage: ±5μV

Low Bias Current

Gain Bandwidth Product: 11MHz

• Rail-to-Rail Output

• High Slew Rate:15V/μs

Low Quiescent Current: 2.0mA (TYP)

Supply Voltage Range: 4.5V to 36V

• Over-Temperature Protection

• Low Noise: $8nV/\sqrt{HZ}$ at 1kHz

Differential Input Voltage Up to Supply Rail, can

Work as Comparator

Extended Temperature: -40°C to +125°C

Micro SIZE PACKAGES: SOT23-5, SOP8, MSOP8

and SOP14

2 Applications

- Sensors
- Photodiode Amplification
- Active Filters
- Test Equipment
- Driving A/D Converters
- Industrial Control

3 Descriptions

The ZM866X is a low noise, low offset voltage and high voltage operational amplifier, which can be designed into a wide range of applications. The ZM866X has a gain-bandwidth product of 11MHz, a slew rate of 15V/ μ s and a quiescent current of 2.0mA at wide power supply range.

The ZM866X is designed to provide optimal performance in low noise systems. It provides rail-to rail output swing into heavy loads.

The ZM866X has over-temperature protection feature to guarantee the chip safe. The output of ZM866X will enter high impendence when die temperature reach around 170°C and will recover the function when the die temperature down to around 150°C.

The ZM866X is available in Green SOT23-5, SOP8, MSOP8 and SOP14 packages. It operates over an ambient temperature range of -40 $^{\circ}$ C to +125 $^{\circ}$ C under single power supplies of 4.5V to 36V or dual power supplies of ±2.25V to ±18V.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE(NOM)		
ZM8661	SOT23-5	1.60mm × 2.92mm		
	SOP8	4.90mm × 3.90mm		
ZM8662	SOP8	4.90mm × 3.90mm		
	MSOP8	3.00mm×3.00mm		
ZM8664 SOP14 8.65n		8.65mm x 3.90mm		

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

Rev A.1 1/18

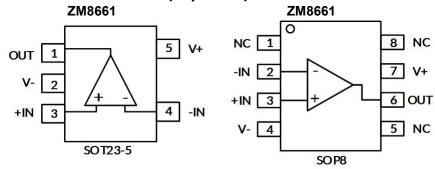
Table of Contents

2 Applications	1
3 Descriptions	1
4 Revision History	3
5 Package/Ordering Information (1)	1
6 Pin Configuration and Functions (Top View)	5
7 Specifications	
7.1 Absolute Maximum Ratings	7
7.2 ESD Ratings	7
7.3 Recommended Operating Conditions	
7.4 Electrical Characteristics	
7.5 Typical Characteristics1)
8 Pacakge Outline Dimensions	3
9 Tape and Reel Information1	

4 Revision History

Note: Page numbers for previous revisions may different from page numbers in the current version.

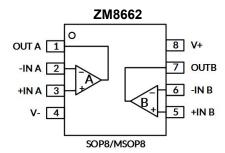
VERSION	Change Date	Change Item
A.1	2024/03/20	Initial version completed



5 Package/Ordering Information (1)

Orderable Device	Package Type	Pin	Channel	Op Temp(°C)	Device MSL ⁽³⁾		Package Qty
ZM8661XF-G	SOT23-5	5	1	-40°C ~125°C	8661	MSL1	Tape and Reel,3000
ZM8661XK-G	SOP8	8	1	-40°C ~125°C	ZM8661	MSL1	Tape and Reel,4000
ZM8662XK-G	SOP8	8	2	-40°C ~125°C	ZM8662	MSL1	Tape and Reel,4000
ZM8662XM-G	MSOP8	8	2	-40°C ~125°C	ZM8662	MSL1	Tape and Reel, 4000
ZM8664XP	SOP14	14	4	-40°C ~125°C	ZM8664	MSL3	Tape and Reel,4000

- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.
- (3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.


6 Pin Configuration and Functions (Top View)

Pin Description

NABAE	Р	IN	I/O (1)	DESCRIPTION
NAME SOT23-5 SOP8 I/O (1) DES		1/0 (-)	DESCRIPTION	
OUT	1	6	0	Output
V-	2	4	-	Negative (lowest) power supply
+IN	3	3	ı	Positive (noninverting) input
-IN	4	2	ı	Negative (inverting) input
V+	5	7	-	Positive (highest) power supply
NC ⁽²⁾	-	1,5,8	-	No internal connection (can be left floating)

- (1) I = Input, O = Output.
- (2) There is no internal connection. Typically, GND is the recommended connection to a heat spreading plane.

Pin Description

NABAT	PIN	I/O (1)	DESCRIPTION		
NAME	SOP8/MSOP8	1 1/0 (-/	DESCRIPTION		
-INA	2	I	Inverting input, channel A		
+INA	3	1	Noninverting input, channel A		
-INB	6	I	Inverting input, channel B		
+INB	5	I	Noninverting input, channel B		
OUTA	1	0	Output, channel A		
OUTB	7	0	Output, channel B		
V-	4	-	Negative (lowest) power supply		
V+	8	-	Positive (highest) power supply		

⁽¹⁾ I = Input, O = Output.

Pin Configuration and Functions (Top View)

Pin Description

i ili Descri	Pulon		
NAME	PIN	I/O ⁽¹⁾	DESCRIPTION
IVAIVIE	SOP14	1,0 \	DESCRIPTION
-INA	2	1	Inverting input, channel A
+INA	3	I	Noninverting input, channel A
-INB	6	I	Inverting input, channel B
+INB	5	1	Noninverting input, channel B
-INC	9	1	Inverting input, channel C
+INC	10	I	Noninverting input, channel C
-IND	13	1	Inverting input, channel D
+IND	12	1	Noninverting input, channel D
OUTA	1	0	Output, channel A
OUTB	7	0	Output, channel B
OUTC	8	0	Output, channel C
OUTD	14	0	Output, channel D
V-	11	-	Negative (lowest) power supply or ground (for single supply operation)
V+	4	-	Positive (highest) power supply

⁽¹⁾ I = Input, O = Output.

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT
	Supply, V _S =(V+) - (V-)		40		
Voltage	Signal input pin (2)	(V-) - 0.3	(V+) + 0.3		
Voltage	Signal output pin (3)	(V-) - 0.3	(V+) + 0.3]	
	Differential input voltage	(V-) - (V+)	(V+) - (V-)		
	Signal input pin (2)	-10	10	mA	
Current	Signal output pin (3)	-10	10	mA	
	Output short-circuits (4)	Conti	Continuous		
	Package thermal impedance (5)	SOT23-5		230	
		SOP8		110	°C/\\
θ_{JA}		MSOP8		170	°C/W
		SOP14		105	
	Operating range, T _A		-40	125	
Temperature	Junction, T _J ⁽⁶⁾	-40	150	°C	
	Storage, T _{stg}	-65	150] '	
	Lead temperature (Soldering,10se	ec)		260	

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

- (2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3V beyond the supply rails should be current-limited to 10mA or less.
- (3) Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.3V beyond the supply rails should be current-limited to ±10mA or less.
- (4) Short-circuit to ground, one amplifier per package.
- (5) The package thermal impedance is calculated in accordance with JESD-51.
- (6) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.

7.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

			VALUE	UNIT
.,,		Human-body model (HBM), JEDEC EIA /JESD22-A114		
V _(ESD) Electrostatic discharge		Charged-device model (CDM), ANSI/ESDA/JEDEC JS-002-2022	±1500	, v

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

7.3 Recommended Operating Conditions

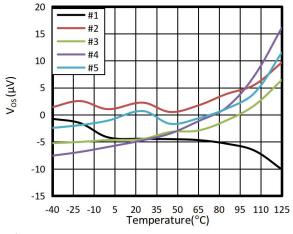
Over operating free-air temperature range (unless otherwise noted).

		MIN	MAX	UNIT
Construction V (VI) (VI)	Single-supply	4.5	36	.,
Supply voltage, V _S = (V+) - (V-)	Dual-supply	±2.25	±18]

7.4 Electrical Characteristics

At T_A = +25°C, Vs= 36V, R_L = 10k Ω , Full $^{(9)}$ = -40°C to +125°C, unless otherwise noted $^{(1)}$

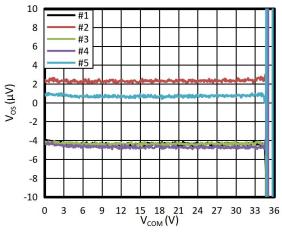
	PARAMETER	CONDITIONS	T _A		ZM866X		UNIT
	PANAIVILIEN	CONDITIONS	'A	MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	Oluii
OWER SUPP	PLY						
V_{S}	Operating Voltage Range		Full	4.5		36	V
		V _S =5V	25°C		2.0	2.4	
l.	Quiescent Current per	VS-3V	Full			2.6	m A
lα	Amplifier	V _S =36V	25°C		2.1	2.5	mA
		V _S =30V	Full			2.7	
PSRR	Power-Supply Rejection	V _S =4.5V to 36V	25°C	130	150		dB
FJNN	Ratio	V _S -4.3V to 30V	Full	120			ив
NPUT						,	
		V - 5V V - 2 5V	25°C	-20	±5	20	
Vos	Input Offset Voltage	$V_S = 5V, V_{CM} = 2.5V$	Full	-30		30	μV
VUS	input onset voitage	V _S = 36V, V _{CM} = 18V	25°C	-20	±10	20	
		$V_S = 36V, V_{CM} = 18V$	Full	-30		30	μV
Vos Tc	Input Offset Voltage Drift		Full		±0.1		μV/°(
ID	Innut Bing Courset (4) (5)	V 20V V 40V	25°C	-2.5	0.3	2.5	nA
IB	Input Bias Current (4) (5)	V _S = 36V, V _{CM} = 18V	Full	-5		5	
	Location of the Comment (4)	V 20V V 40V	25°C		0.3		4
los	Input Offset Current (4)	$V_S = 36V, V_{CM} = 18V$	Full	-5		5	nA
I _{IN}	Different Input Current	V _S = 36V, V _{ID} = 36V	25°C		1	10	μΑ
		Differential Mode	25°C		5		pF
C_{IN}	Input Capacitance	Common Mode	25°C		2.5		pF
_		$R_{LOAD} = 10k\Omega$,	25°C	130	150		dB
A _{OL}	Open-loop Voltage Gain	V _{OUT} = 0.5 V to 35.5 V	Full	120			dB
V _{CM}	Common-Mode Voltage Range		Full	(V-)		(V+)-1.5	V
CNADD	Common-Mode Rejection	ection	25°C	130	150		- 15
CMRR	Ratio	V _{CM} =0 to 34.5V	Full	120			dB
UTPUT			•				
		$R_{LOAD} = 100k\Omega$ to $V_S/2$	25°C		10		
	Output Swing from Positive Rail	$R_{LOAD} = 10k\Omega$ to $V_S/2$	25°C		95	150	mV
	Itali	$R_{LOAD} = 2k\Omega$ to $V_s/2$	25°C		470		
		$R_{LOAD} = 100 k\Omega$ to $V_s/2$	25°C		6		
	Output Swing from Negative Rail	$R_{LOAD} = 10k\Omega$ to $V_S/2$	25°C		60	150	mV
	ivegative naii	$R_{LOAD} = 2k\Omega$ to $V_s/2$	25°C		255		
	(6) 73	Source	25°C	45	60		
Isc	Short-Circuit Current (6) (7)	Sink	25°C	90	100		mA
C Specificat	ions		'		•	•	•
SR	Slew Rate (8)	G=1, 10V Step	25°C		15		V/µs
GBW	Gain-Bandwidth Product		25°C		11		MHz
ts	Settling Time, 0.1%	G=1, 10V Step	25°C		5		μs
t _{OR}	Overload Recovery Time		25°C		300		ns


PM	Phase Margin	R _L =10kΩ, C _L = 50pF	25°C	60		۰
GM	Gain Margin	R _L =10kΩ, C _L = 50pF	25°C	10		dB
NOISE						
En	Input Voltage Noise	V _S = 5V, f = 0.1Hz to 10Hz	25°C	0.2		μVрр
	en Input Voltage Noise Density	f = 0.1kHz	25°C	8		nV/√Hz
en		f = 1kHz	25°C	8		
		f = 10kHz	25°C	8		
THD+N	Total Harmonic Distortion and Noise	$f = 1kHz$, $G = 1$, $R_L = 10k\Omega$, $V_{OUT} = 6V_{RMS}$		0.0004		%
Thermal Prote	ection					
T_{SHDN}	Thermal Shutdown Temperature			170		°C
ΔT_{SHDN}	Thermal Shutdown Hysteresis			20		1 -C

- (1) Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device.
- (2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.
- (4) This parameter is ensured by design and/or characterization and is not tested in production.
- (5) Positive current corresponds to current flowing into the device.
- (6) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.
- (7) Short circuit test is a momentary test.
- (8) Number specified is the slower of positive and negative slew rates.
- (9) Specified by characterization only.

7.5 Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.


At T_A = +25°C, V_S = ±18V, V_{CM} = 0V, R_L = 10k Ω , unless otherwise specified.

20 #1 #2 #3 #3 #4 #4 #5 5 5 5 65 80 95 110 125 Temperature(°C)

Figure 1.V $_{OS}$ at 36V V $_{S}$, 18V V $_{CM}$ vs Temperature

Figure 2.V $_{\text{OS}}$ at 5V V $_{\text{S}}$, 2.5V V $_{\text{CM}}$ vs Temperature

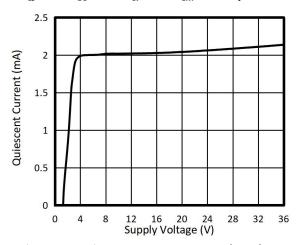
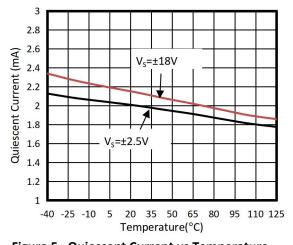



Figure 3. Offset Voltage vs Common Mode Voltage

Figure 4. Quiescent Current vs Supply Voltage

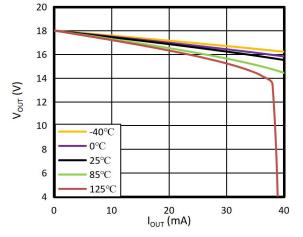


Figure 5. Quiescent Current vs Temperature

Figure 6. Vout vs Iout, Source

Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

At T_A = +25°C, V_S = ±18V, V_{CM} = 0V, R_L = 10k Ω , unless otherwise specified.

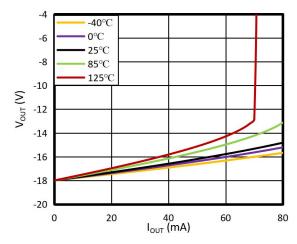


Figure 7. Vout vs Iout, Sink

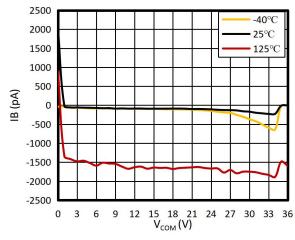


Figure 8. IB vs V_{COM}

Figure 9. THD+N VS Frequency

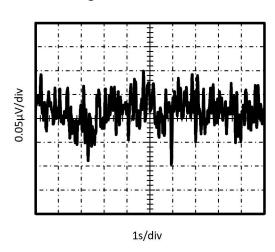


Figure 10. 0.1Hz to 10Hz Input Voltage Noise

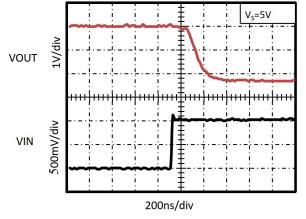


Figure 11. Positive Overload Recovery

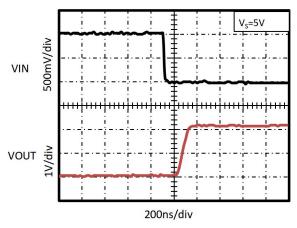
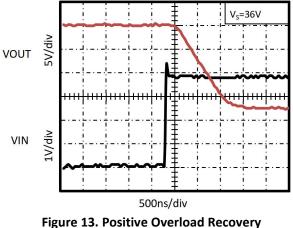
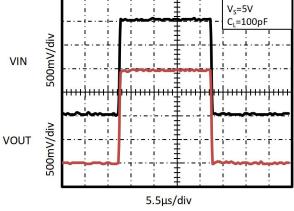



Figure 12. Negative Overload Recovery

Typical Characteristics


NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

At T_A = +25°C, V_S = ±18V, V_{CM} = 0V, R_L = 10k Ω , unless otherwise specified.

V_s=36V VIN 500ns/div

Figure 14. Negative Overload Recovery

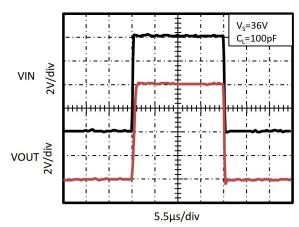
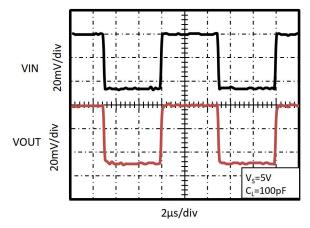



Figure 15. Large Signal Step Response

Figure 16. Large Signal Step Response

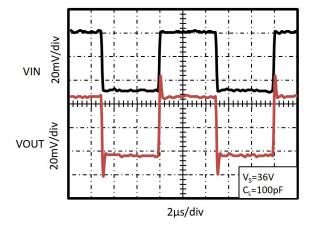
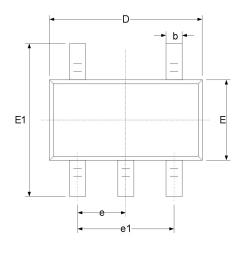
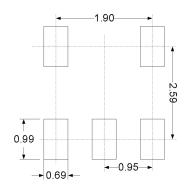
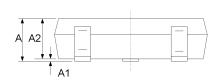
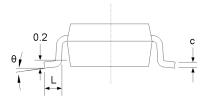




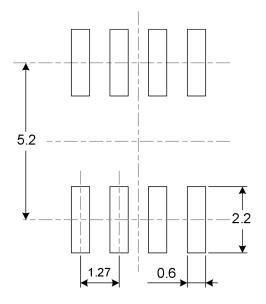
Figure 17. Small Signal Step Response


Figure 18. Small Signal Step Response

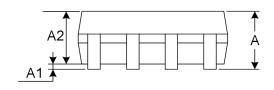

8 Pacakge Outline Dimensions SOT23-5 (3)

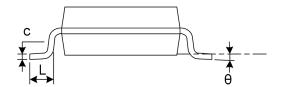
RECOMMENDED LAND PATTERN (Unit: mm)



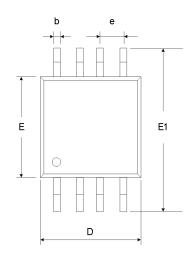


Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
	Min	Max	Min	Max		
A (1)	1.050	1.250	0.041	0.049		
A1	0.000	0.100	0.000	0.004		
A2	1.050	1.150	0.041	0.045		
b	0.300	0.500	0.012	0.020		
С	0.100	0.200	0.004	0.008		
D (1)	2.820	3.020	0.111	0.119		
E (1)	1.500	1.700	0.059	0.067		
E1	2.650	2.950	0.104	0.116		
е	0.950(BSC) (2)	0.037(BSC) (2)			
e1	1.800	2.000	0.071	0.079		
L	0.300	0.600	0.012	0.024		
θ	0°	8°	0°	8°		

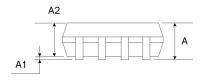

- ${\bf 1.}\ {\bf Plastic}\ {\bf or}\ {\bf metal}\ {\bf protrusions}\ {\bf of}\ {\bf 0.15mm}\ {\bf maximum}\ {\bf per}\ {\bf side}\ {\bf are}\ {\bf not}\ {\bf included}.$
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. This drawing is subject to change without notice.


SOP8 (3)

RECOMMENDED LAND PATTERN (Unit: mm)

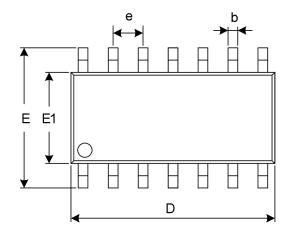


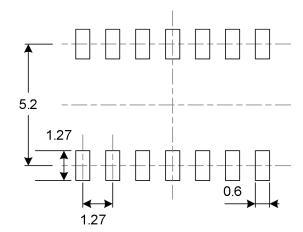
Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
	Min	Max	Min	Max		
A (1)	1.350	1.750	0.053	0.069		
A1	0.100	0.250	0.004	0.010		
A2	1.350	1.550	0.053	0.061		
b	0.330	0.510	0.013	0.020		
С	0.170	0.250	0.007	0.010		
D (1)	4.800	5.000	0.189	0.197		
е	1.270(BSC) (2)	0.050(BSC) ⁽²⁾			
Е	5.800	6.200	0.228	0.244		
E1 ⁽¹⁾	3.800	4.000	0.150	0.157		
L	0.400	1.270	0.016	0.050		
θ	0°	8°	0°	8°		


- Plastic or metal protrusions of 0.15mm maximum per side are not included.
 BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
 This drawing is subject to change without notice.

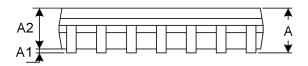
MSOP8 (3)

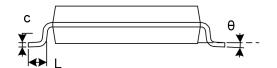
RECOMMENDED LAND PATTERN (Unit: mm)



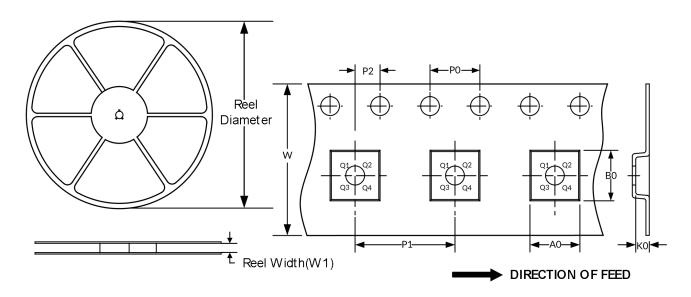


Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
	Min	Max	Min	Max		
A (1)	0.820	1.100	0.032	0.043		
A1	0.020	0.150	0.001	0.006		
A2	0.750	0.950	0.030	0.037		
b	0.250	0.380	0.010	0.015		
С	0.090	0.230	0.004	0.009		
D (1)	2.900	3.100	0.114	0.122		
е	0.650 (BSC) (2)	0.026 (BSC) ⁽²⁾			
E (1)	2.900	3.100	0.114	0.122		
E1	4.750	5.050	0.187	0.199		
L	0.400	0.800	0.016	0.031		
θ	0°	6°	0°	6°		


- 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. This drawing is subject to change without notice.


SOP14 (3)

RECOM M END ED LAND PATTERN (Unit: mm)


Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Мах	
A (1)	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.310	0.510	0.012	0.020	
С	0.100	0.250	0.004	0.010	
D ⁽¹⁾	8.450	8.850	0.333	0.348	
е	1.270(BSC) (2)	0.050(BSC) ⁽²⁾		
Е	5.800	6.200	0.228	0.244	
E1 ⁽¹⁾	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

- 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. This drawing is subject to change without notice.

9 Tape and Reel Information

REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT23-5	7"	9.5	3.20	3.20	1.40	4.0	4.0	2.0	8.0	Q3
SOP8	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
MSOP8	13"	12.4	5.20	3.30	1.50	4.0	8.0	2.0	12.0	Q1
SOP14	13"	16.4	6.60	9.30	2.10	4.0	8.0	2.0	16.0	Q1

^{1.} All dimensions are nominal.

^{2.} Plastic or metal protrusions of 0.15mm maximum per side are not included.

IMPORTANT NOTICE AND DISCLAIMER

Z-Micro will accurately and reliably provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design advice, WEB tools, safety information and other resources, without warranty of any defect, and will not make any express or implied warranty, including but not limited to the warranty of merchantability Implied warranty that it is suitable for a specific purpose or does not infringe the intellectual property rights of any third party.

These resources are intended for skilled developers designing with Z-Micro products You will be solely responsible for: (1) Selecting the appropriate products for your application; (2) Designing, validating and testing your application; (3) Ensuring your application meets applicable standards and any other safety, security or other requirements; (4) Z-Micro and the Z-Micro logo are registered trademarks of Z-Micro. All trademarks are the property of their respective owners; (5) For change details, review the revision history included in any revised document. The resources are subject to change without notice. Our company will not be liable for the use of this product and the infringement of patents or third-party intellectual property rights due to its use.