

1MHz, Precision, Rail-to-Rail I/O CMOS Operational Amplifier

1 Features

• High Gain Bandwidth:1MHz

 Rail-to-Rail Input and Output ±4.5mV Max Vos

 Input Voltage Range: -0.1V to +5.6V with Vs = 5.5V

Supply Range: +2.5V to +5.5V

• Specified Up To +125°C

• Micro Size Packages: SOT353(SC70-5)

2 Applications

Photodiode Amplification

Active Filter

• Test Equipment

• Driving A/D Converters

3 Descriptions

The ZM321BK products offer low voltage operation and rail-to-rail input and output, as well as excellent speed/power consumption ratio, providing an excellent bandwidth (1MHz) and slew rate of 0.45V/us. The opamps are unity gain stable and feature an ultra-low input bias current.

The ZM321BK has lower offset, which is guaranteed not upper than ± 4.5 mV at 25°C with Vs = 5V, V_{CM} = Vs/2.

The devices are ideal for sensor interfaces, active filters and portable applications. The ZM321BK families of operational amplifiers are specified at the full temperature range of -40°C to +125°C under single or dual power supplies of 2.5V to 5.5V.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE(NOM)		
7M224DV	SOT23-5	2.90mm×1.60mm		
ZM321BK	SOT353(SC70-5)	2.10mm×1.25mm		

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

REV A.1 1/16

Table of Contents

2 Applications 1 3 Descriptions 1 4 Revision History 3 5 Package/Ordering Information ⁽¹⁾ 4 6 Pin Configuration and Functions (Top View) 5 7 Specifications 6 7.1 Absolute Maximum Ratings 6 7.2 ESD Ratings 6 7.3 Recommended Operating Conditions 6 7.4 Electrical Characteristics 7 7.5 Typical Characteristics 9 9 Application and Implementation 11 9.1 Application Note 11 10 Layout 12 11 Pacakge Outline Dimensions 13	1 Features	1
3 Descriptions 1 4 Revision History 3 5 Package/Ordering Information ⁽¹⁾ 4 6 Pin Configuration and Functions (Top View) 5 7 Specifications 6 7.1 Absolute Maximum Ratings 6 7.2 ESD Ratings 6 7.3 Recommended Operating Conditions 6 7.4 Electrical Characteristics 7 7.5 Typical Characteristics 9 9 Application and Implementation 11 9.1 Application Note 11 10 Layout 12 10.1 Layout Guideline 12	2 Applications	1
5 Package/Ordering Information ⁽¹⁾ 4 6 Pin Configuration and Functions (Top View) 5 7 Specifications 6 7.1 Absolute Maximum Ratings 6 7.2 ESD Ratings 6 7.3 Recommended Operating Conditions 6 7.4 Electrical Characteristics 7 7.5 Typical Characteristics 9 9 Application and Implementation 11 9.1 Application Note 11 10 Layout 12 10.1 Layout Guideline 12	3 Descriptions	1
5 Package/Ordering Information ⁽¹⁾ 4 6 Pin Configuration and Functions (Top View) 5 7 Specifications 6 7.1 Absolute Maximum Ratings 6 7.2 ESD Ratings 6 7.3 Recommended Operating Conditions 6 7.4 Electrical Characteristics 7 7.5 Typical Characteristics 9 9 Application and Implementation 11 9.1 Application Note 11 10 Layout 12 10.1 Layout Guideline 12	4 Revision History	3
7 Specifications 6 7.1 Absolute Maximum Ratings 6 7.2 ESD Ratings 6 7.3 Recommended Operating Conditions 6 7.4 Electrical Characteristics 7 7.5 Typical Characteristics 9 9 Application and Implementation 11 9.1 Application Note 11 10 Layout 12 10.1 Layout Guideline 12	5 Package/Ordering Information ⁽¹⁾	4
7 Specifications 6 7.1 Absolute Maximum Ratings 6 7.2 ESD Ratings 6 7.3 Recommended Operating Conditions 6 7.4 Electrical Characteristics 7 7.5 Typical Characteristics 9 9 Application and Implementation 11 9.1 Application Note 11 10 Layout 12 10.1 Layout Guideline 12	6 Pin Configuration and Functions (Top View)	5
7.2 ESD Ratings 6 7.3 Recommended Operating Conditions 6 7.4 Electrical Characteristics 7 7.5 Typical Characteristics 9 9 Application and Implementation 11 9.1 Application Note 11 10 Layout 12 10.1 Layout Guideline 12		
7.2 ESD Ratings 6 7.3 Recommended Operating Conditions 6 7.4 Electrical Characteristics 7 7.5 Typical Characteristics 9 9 Application and Implementation 11 9.1 Application Note 11 10 Layout 12 10.1 Layout Guideline 12	7.1 Absolute Maximum Ratings	6
7.3 Recommended Operating Conditions67.4 Electrical Characteristics77.5 Typical Characteristics99 Application and Implementation119.1 Application Note1110 Layout1210.1 Layout Guideline12	7.2 ESD Ratings	6
7.4 Electrical Characteristics 7 7.5 Typical Characteristics 9 9 Application and Implementation 11 9.1 Application Note 11 10 Layout 12 10.1 Layout Guideline 12		
7.5 Typical Characteristics 9 9 Application and Implementation 11 9.1 Application Note 11 10 Layout 12 10.1 Layout Guideline 12		
9 Application and Implementation		
9.1 Application Note 11 10 Layout 12 10.1 Layout Guideline 12	9 Application and Implementation	11
10 Layout	9.1 Application Note	11
10.1 Layout Guideline	10 Layout	12
·	10.1 Layout Guideline	12
	·	

4 Revision History

Note: Page numbers for previous revisions may different from page numbers in the current version.

VERSION	Change Date	Change Item
A.1	2022/05/24	Initial version completed

5 Package/Ordering Information⁽¹⁾

Orderable Device	Package Type	Pin	Channel	Op Temp(°C)	Device Marking ⁽²⁾	MSL ⁽³⁾	Package Qty
ZM321BKXF	SOT23-5	5	1	-40°C ~125°C	321BK	MSL3	Tape and Reel,3000
ZM321BKXC5	SOT353(SC70-5)	5	1	-40°C ~125°C	321BK	MSL3	Tape and Reel,3000

- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.
- (3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

6 Pin Configuration and Functions (Top View)

ZM321BK +IN 1 5 V+ V- 2 -IN 3 4 OUT SOT23-5/SOT353(SC70-5)

Pin Description

	PIN		
NAME ZM321BK		I/O	DESCRIPTION
	SOT23-5/ SOT353(SC70-5)		
+IN	1	I	Positive (noninverting) input
V-	2	-	Negative (lowest) power supply
-IN	3	I	Negative (inverting) input
OUT	4	0	Output
V+	5	-	Positive (highest) power supply

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT	
	Supply, Vs=(V+) - (V-)			7		
Voltage	Signal input pin ⁽²⁾		(V-)-0.5	(V+) +0.5	V	
	Signal output pin ⁽³⁾		(V-)-0.5	(V+) +0.5		
	Signal input pin (2)	-10	10	mA		
Current	Signal output pin (3)	-140	140			
	Output short-circuit (4)	Cont	Continuous			
Δ	Dackage thermal impedance (5)	SOT23-5		230	°C/W	
θ_{JA}	Package thermal impedance (5) SC70-5			380	7 0/00	
	Operating range, T _A	-40	125			
Temperature	Junction, T _J		150	°C		
	Storage, T _{stg}	-65	150			

⁽¹⁾Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

- (4)Short-circuit to ground, one amplifier per package.
- (5)The package thermal impedance is calculated in accordance with JESD-51.
- (6)The maximum power dissipation is a function of $T_{J(MAX)}$, R_{BJA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A) / R_{BJA}$. All numbers apply for packages soldered directly onto a PCB.

7.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

			VALUE	UNIT
V _(ESD) Electrostatic discharge	Human-body model (HBM)	±3000	V	
	Machine Model (MM)	±200	\ \ \	

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

7.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
Supply voltage, Vs= (V+) - (V-)	Single-supply	2.5		5.5	V
Supply voltage, vs= (v+) - (v-)	Dual-supply	±1.25		±2.75	\ \ \

⁽²⁾Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less.

⁽³⁾Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.5V beyond the supply rails should be current-limited to ±50mA or less.

7.4 Electrical Characteristics

(At $T_A = +25^{\circ}\text{C}$, $V_S = 5V$, $R_L = 10\text{k}\Omega$ connected to $V_S/2$, and $V_{OUT} = V_S/2$, $Full^{(9)} = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$, unless otherwise noted.)⁽¹⁾

PARAMETER			_		ZM321BI	<	LINUTO
		CONDITIONS	TJ	MIN	TYP	MAX	UNITS
POWER	SUPPLY						
Vs	Operating Voltage Range		25°C	2.5		5.5	V
ΙQ	Quiescent Current/Amplifier		25°C		85	140	μΑ
PSRR	Power-Supply Rejection Ratio	Vs=2.5V to 5.5V, V _{CM} =(V-)+0.5V	25°C Full	70 64	75		dB
INPUT		1	1			I	
Vos	Input Offset Voltage	V _{CM} =0V to 3.5V	25°C	-4.5	±0.8	4.5	mV
Vos TC	Input Offset Voltage Average Drift	-40°C to 125°C			2		μV/°C
IB	Input Bias Current		25°C		10		pА
los	Input Offset Current		25°C		10		pA
V _{CM}	Common-Mode Voltage Range	Vs= 5.5V	25°C	-0.1		5.6	V
		Vs= 5.5V, V _{CM}	25°C	65	85		
CMDD Common Made Delection Datie	=-0.1V to 4V	Full	62			dB	
CMRR	CMRR Common-Mode Rejection Ratio	Vs= 5.5V, V _{CM}	25°C	58	80		- uв -
		=-0.1V to 5.6V	Full	56			
OUTPUT	·				•		
		R _L =2KΩ, Vo=	25°C	85	95		- dB
Λ -	Open Leep Veltage Cain	0.15V to 4.85V	Full	75			
Aol	Open-Loop Voltage Gain	R _L =10KΩ, Vo=	25°C	88	100		uБ
		0.05V to 4.95V	Full	80			
	Output Swing From Boil	R _L =2KΩ	2500		25		mV
	Output Swing From Rail	R _L =10KΩ	- 25°C		8		IIIV
lout	Output Current Source		25°C		120		mA
FREQUE	ENCY RESPONSE			•		•	
SR	Slew Rate		25°C		0.45		V/µs
GBP	Gain-Bandwidth Product		25°C		1		MHz
PM	Phase Margin		25°C		64		۰
ts	Setting Time,0.1%				1.3		μs
	Overload Recovery Time	V _{IN} ·Gain≥V _S			2.3		μs
NOISE							
	Input Voltage Naise Density	f = 1KHz	25°C		22		nV/√Hz
en	Input Voltage Noise Density	f = 10KHz	25°C		20		nV/√Hz

⁽¹⁾ Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device.

⁽²⁾ Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.

⁽³⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

⁽⁴⁾ This parameter is ensured by design and/or characterization and is not tested in production.

⁽⁵⁾ Positive current corresponds to current flowing into the device.

⁽⁶⁾ The maximum power dissipation is a function of TJ(MAX), RθJA, and TA. The maximum allowable power dissipation at any ambient temperature is PD = (T J(MAX) - TA) / RθJA. All numbers apply for packages soldered directly onto a PCB.

⁽⁷⁾ Short circuit test is a momentary test.

⁽⁸⁾ Number specified is the slower of positive and negative slew rates.

(9) Specified by characterization only.

7.5 Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

At $T_A = +25^{\circ}C$, $V_S=5V$, $R_L = 10k\Omega$ connected to $V_S/2$, $V_{OUT} = V_S/2$, unless otherwise noted.

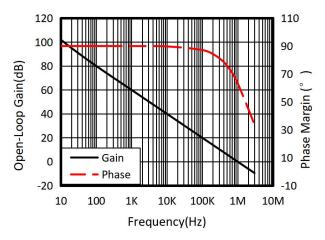


Figure 1. Open-Loop Gain and Phase vs Frequency

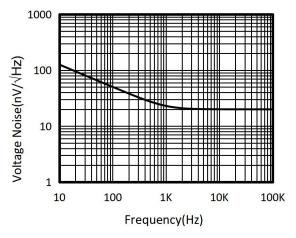


Figure 3. Input Voltage Noise Spectral Density vs Frequency

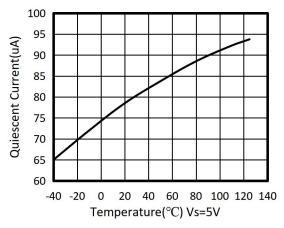


Figure 5. Quiescent Current vs temperature

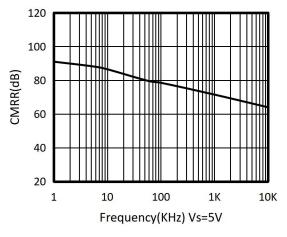


Figure 2. Common-Mode Rejection Ratio vs Frequency

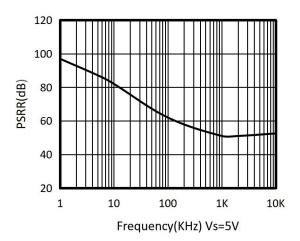


Figure 4. Power-Supply Rejection Ratio vs Frequency

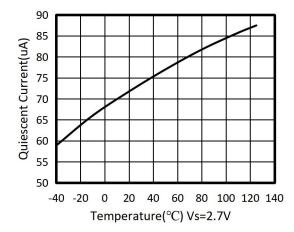


Figure 6. Quiescent Current vs temperature

Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

At T_A = +25°C, Vs=5V, R_L = 10k Ω connected to V_S/2, V_{OUT} = V_S/2, unless otherwise noted.

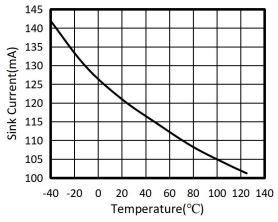


Figure 7. Sink Current vs Temperature

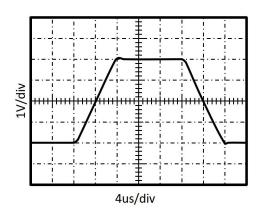


Figure 9. Large-Signal Step Response

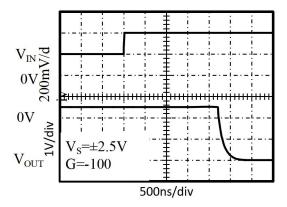


Figure 11. Positive Overvoltage Recovery

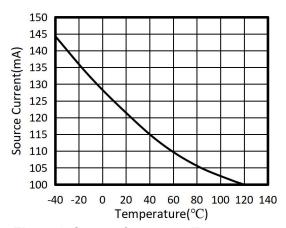


Figure 8. Source Current vs Temperature

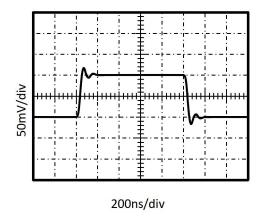


Figure 10. Small-Signal Step Response

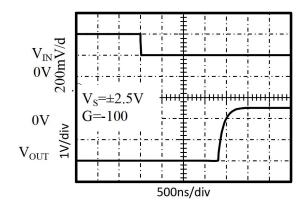


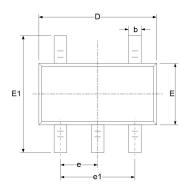
Figure 12. Negative Overvoltage Recovery

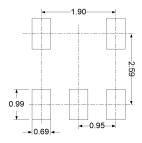
9 Application and Implementation

Information in the following applications sections is not part of the Z-Micro component specification, and Z-Micro does not warrant its accuracy or completeness. Z-Micro's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

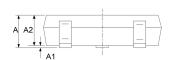
9.1 Application Note

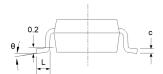
The ZM321BK is high precision, rail-to-rail operational amplifiers that can be run from a single-supply voltage 2.5V to 5.5V (±1.25V to ±2.75V). Supply voltages higher than 7V (absolute maximum) can permanently damage the amplifier. Rail-to-rail input and output swing significantly increases dynamic range, especially in low-supply applications. Good layout practice mandates use of a 0.1uF capacitor place closely across the supply pins.


10 Layout

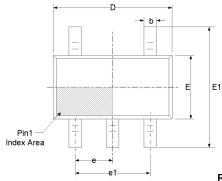

10.1 Layout Guideline

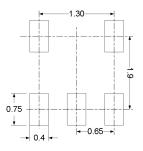
Attention to good layout practices is always recommended. Keep traces short. When possible, use a PCB ground plane with surface-mount components placed as close to the device pins as possible. Place a 0.1uF capacitor closely across the supply pins.


These guidelines should be applied throughout the analog circuit to improve performance and provide benefits such as reducing the EMI susceptibility.

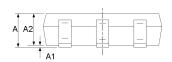

11 Pacakge Outline Dimensions SOT23-5

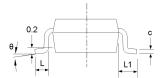
RECOMMENDED LAND PATTERN (Unit: mm)


Coursels al	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
А	1.050	1.250	0.041	0.049		
A1	0.000	0.100	0.000	0.004		
A2	1.050	1.150	0.041	0.045		
b	0.300	0.500	0.012	0.020		
С	0.100	0.200	0.004	0.008		
D	2.820	3.020	0.111	0.119		
Е	1.500	1.700	0.059	0.067		
E1	2.650	2.950	0.104	0.116		
е	0.950	0.950(BSC)		(BSC)		
e1	1.800	2.000	0.071	0.079		
L	0.300	0.600	0.012	0.024		
θ	0°	8°	0°	8°		

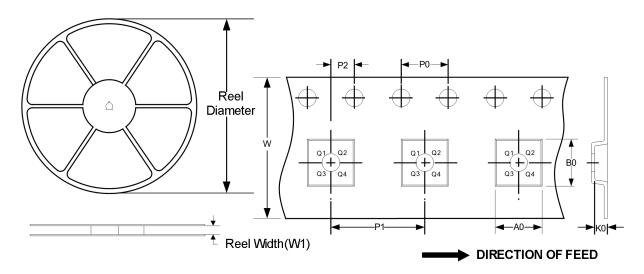

- A. This drawing is subject to change without notice.

 B. Plastic or metal protrusions of 0.15mm maximum per side are not included.


 C. BSC: Basic Dimension. Theoretically exact value shown without tolerances.


SOT353(SC70-5)

RECOMMENDED LAND PATTERN (Unit: mm)



Cumbal	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
А	0.900	1.100	0.035	0.043		
A1	0.000	0.100	0.000	0.004		
A2	0.900	1.000	0.035	0.039		
b	0.150	0.350	0.006	0.014		
С	0.080	0.150	0.003	0.006		
D	2.000	2.200	0.079	0.087		
E	1.150	1.350	0.045	0.053		
E1	2.150	2.450	0.085	0.096		
е	0.650	(BSC)	0.026	(BSC)		
e1	1.300	(BSC)	0.051	(BSC)		
L	0.260	0.460	0.010	0.018		
L1	0.525		0.021			
θ	0°	8°	0°	8°		

- A. This drawing is subject to change without notice.
 B. Plastic or metal protrusions of 0.15mm maximum per side are not included.
 C. BSC: Basic Dimension. Theoretically exact value shown without tolerances.

12 Tape and Reel Information REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT23-5	7"	9.5	3.20	3.20	1.40	4.0	4.0	2.0	8.0	Q3
SOT353(SC70-5)	7"	9.5	2.25	2.55	1.20	4.0	4.0	2.0	8.0	Q3

^{1.} All dimensions are nominal.

^{2.} Plastic or metal protrusions of 0.15mm maximum per side are not included.

IMPORTANT NOTICE AND DISCLAIMER

Z-Micro will accurately and reliably provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design advice, WEB tools, safety information and other resources, without warranty of any defect, and will not make any express or implied warranty, including but not limited to the warranty of merchantability Implied warranty that it is suitable for a specific purpose or does not infringe the intellectual property rights of any third party.

These resources are intended for skilled developers designing with Z-Micro products You will be solely responsible for: (1) Selecting the appropriate products for your application; (2) Designing, validating and testing your application; (3) Ensuring your application meets applicable standards and any other safety, security or other requirements; (4) Z-Micro and the Z-Micro logo are registered trademarks of Z-Micro. All trademarks are the property of their respective owners; (5) For change details, review the revision history included in any revised document. The resources are subject to change without notice. Our company will not be liable for the use of this product and the infringement of patents or third-party intellectual property rights due to its use.